


Lecture Notes in Artificial Intelligence 4573
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science



Manuel Kauers Manfred Kerber
Robert Miner Wolfgang Windsteiger (Eds.)

Towards Mechanized
Mathematical Assistants

14th Symposium, Calculemus 2007
6th International Conference, MKM 2007
Hagenberg, Austria, June 27-30, 2007
Proceedings

13



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Manuel Kauers
Wolfgang Windsteiger

Johannes Kepler University
Research Institute for Symbolic Computation, Linz, Austria
E-mail: {Manuel.Kauers, Wolfgang.Windsteiger}@risc.uni-linz.ac.at

Manfred Kerber
The University of Birmingham
School of Computer Science, Birmingham B15 2TT, England
E-mail: M.Kerber@cs.bham.ac.uk

Robert Miner
Design Science, Inc., St. Paul, Minnesota, USA
E-mail: robertm@dessci.com

Library of Congress Control Number: 2007928735

CR Subject Classification (1998):
I.2.2, I.2, H.3, H.2.8, I.7.2, F.4.1, H.4, C.2.4, G.4, I.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-73083-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73083-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12077151 06/3180 5 4 3 2 1 0



Preface

This volume contains the collected contributions of two conferences, Calcule-
mus 2007 and MKM 2007. Calculemus 2007 was the 14th in a series of conferences
dedicated to the integration of computer algebra systems (CAS) and automated
deduction systems (ADS). MKM 2007 was the sixth International Conference
on Mathematical Knowledge Management, an emerging interdisciplinary field
of research in the intersection of mathematics, computer science, library sci-
ence, and scientific publishing. Both conferences aimed to provide mechanized
mathematical assistants.

Although the two conferences have separate communities and separate foci,
there is a significant overlap in the interests in building mechanized mathemat-
ical assistants. For this reason it was decided to collocate the two events in
2007 for the first time, at RISC in Hagenberg, Austria. The number and quality
of the submissions show that this was a good decision. While the proceedings
are shared, the submission process was separate. The responsibility for accep-
tance/rejection rests completely with the two separate Program Committees.

By this collocation we made a contribution against the fragmentation of
communities which work on different aspects of different independent branches,
traditional branches (e.g., computer algebra and theorem proving), as well as
newly emerging ones (on user interfaces, knowledge management, theory explo-
ration, etc.). This will also facilitate the development of integrated mechanized
mathematical assistants that will be routinely used by mathematicians, com-
puter scientists, and engineers in their every-day business.

In total, 23 papers were submitted to Calculemus. For each paper there were
three reviews and, finally, ten papers were accepted for publication in these pro-
ceedings. MKM received 52 submissions (more than double last year’s number).
For each paper there were at least two reviews; if the evaluation was not uniform
we had three and in some cases four reviews. After discussions, we accepted 19
high-quality papers for these proceedings. In the preparation of these proceed-
ings and in managing the whole discussion process, Andrei Voronkov’s EasyChair
conference management system proved itself an excellent tool. In addition to the
contributed papers, abstracts of the invited speakers of MKM are found in these
proceedings.

April 2007 Manuel Kauers
Manfred Kerber

Robert Miner
Wolfgang Windsteiger
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(Federal Minister of Science and Education, Austria)
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Executing in Common Lisp, Proving in ACL2�

Mirian Andrés, Laureano Lambán, and Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edificio Vives. Calle Luis de Ulloa s/n, E-26004 Logroño, Spain

{mirian.andres,lalamban,julio.rubio}@unirioja.es

Abstract. In this paper, an approach to integrate an already-written
Common Lisp program for algebraic manipulation with ACL2 proofs
of properties of that program is presented. We report on a particular
property called “cancellation theorem”, which has been proved in ACL2,
and could be applied to several problems in the field of Computational
Algebraic Topology.

1 Introduction

Kenzo is a Common Lisp program [10] designed by Sergeraert, implementing
his ideas on Constructive Algebraic Topology [19]. Kenzo, and its predecessor
EAT [21], were capable of computing homology groups unknown by any other
means. Kenzo continues to evolve and has been recently released as an open
source computer algebra system [10] and extended with new modules on Koszul
Homology [20], Spectral Sequences [18] and Coalgebras [4].

Several years ago a project was launched to analyze the Kenzo system by
means of formal methods. The objective of the project is twofold. Better knowl-
edge of the internal processes and structures in Kenzo is intented, thus increasing
the reliability of the system. Besides, Kenzo is also a good “laboratory” (due to
its structural richness and to the presence of challenging results which have been
obtained using it) to experiment with different tools and approaches in the field
of formal methods in Software Engineering, allowing the analyst to compare
them, to evaluate them and, hopefully, to apply them to other fields unrelated
to Algebraic Topology or Computer Algebra.

The first efforts were devoted to the Algebraic Specification of EAT [13] and
Kenzo [8,9]. After that, these rather theoretical results were put into practice
through theorem provers. The tactical assistant Isabelle [17] was chosen for the
first studies [1,2] on the application of automated theorem proving in the area
of Algebraic Topology. These preliminary works led to the recent Isabelle mech-
anized proof of the Basic Perturbation Lemma [3], one of the central results in
Algorithmic Homological Algebra. Other lines of research include modeling and
proving with Coq [5], and programming and proving with the system FoCaL [6].

In this paper we report on a relative approach, by using the theorem prover
ACL2 [12]. The limitations of this prover with respect to Isabelle or Coq are
� Partially supported by Comunidad Autónoma de La Rioja, project ANGI-2005/19,

and by Ministerio de Educación y Ciencia, project MTM2006-06513.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 1–12, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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well-known and are essentially related to the underlying logics. ACL2 is based
on a weak form of first order logic, while both Coq and Isabelle can work with
higher order logic. On the positive side, ACL2 is based on Common Lisp (as
Kenzo itself) and is very suitable when linking proofs and running programs.
In addition, the treatment of Symbolic Computation problems with the help of
ACL2 has obtained important successes in recent years (see, for instance, [15]).

The organization of the paper is as follows. The next section introduces our
methodological approach to relate an already-written program with the proofs of
properties in ACL2. Section 3 and 4 are devoted to introduce, respectively, our
motivating examples from Homological Algebra and the basic data structures
and proofs in ACL2. Section 5 presents the main contribution of the paper,
reporting on the automated proof of a “cancellation theorem”. This theorem is
applied in Section 6 to the proof of an algebraic property of our programs. The
paper ends with the section of conclusions and future work, and the bibliography.

2 Proving and Then... Testing

There are many ways in which Symbolic Computation (or programming, more
generally) can interplay with theorem proving. For instance, Computer Algebra
programs can be used as oracles for theorem provers. In the other direction,
theorem provers can be used to ensure the correctness of Computer Algebra
programs. In this paper we will introduce a third manner of interaction: theorem
provers can be used for automated-testing of programs. Although it is usually
considered that testing is easier than proving, and so that testing should occur in
early stages of the quality control cycle, our proposal is the reversal (in a sense
which will be clear later on): first proving and then. . . testing. Of course, the
complete picture of our view is more complex than indicated by that simplistic
phrase. Let us explore it in a concrete situation.

Let us assume that someone gave us a Common Lisp program1 with the
following characteristics:

– it is difficult to test, perhaps because it produces results difficult to interpret,
or, even worse, some of its results are unknown by any other means, and

– the program correctness is difficult to prove, perhaps due to being logically
complex, based on higher-order constructions, for instance.

An example of such a program1 could be the Kenzo system, which has been
developed in Common Lisp and has been successfully tested for more than fifteen
years, but . . . not always: some of the results found with the help of Kenzo
continue to be unverifiable by any other means at this moment (homology groups
of some iterated loop spaces, for instance; see [10]). In addition, Kenzo is based
on both object-orientation and higher-order functional programming, in such a
way that its formal specification is challenging (see [13,8,9]), and therefore its
verification with theorem provers poses problems far from trivial. The formal
specification and verification of some of the algorithms appearing in Kenzo
have been carried out with the Isabelle assistant [17], and were explained in
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[1] and [2]. The most relevant result in this line is the recent Aransay’s proof
in Isabelle/HOL of the BPL, the Basic Perturbation Lemma [3]. The BPL is
one of the most important theorems and algorithms used to build Kenzo. But,
independently of the merits of this mechanized proof of the BPL, the distance
with respect to the programs implementing the BPL in Kenzo, continues to be
quite large.

Since our goal is to verify real Common Lisp programs, a sensible idea should
be to use the ACL2 system to devise proofs (instead of Isabelle or Coq). ACL2
[12] is both a programming language and an environment to produce proofs of
properties of programs. As programming language, ACL2 is an extension of a
sub-language of Common Lisp. The extensions added to Common Lisp in ACL2
are not relevant for our work. On the contrary, the features erased from Common
Lisp in ACL2 are very important with respect to Kenzo. In particular, ACL2
does not allow the programmer to use higher-order functionals, a tool intensively
employed in Kenzo. Thus, in order to study a Common Lisp program1 within
ACL2, we are proposing to write a new Common Lisp program2 emulating the
behavior of program1, but programmed this time in ACL2.

Let us enumerate the characteristics of this situation:

– program1 is
• already written
• in Common Lisp (not necessarily in ACL2);
• efficient;
• tested;
• unproved.

– program2 is
• specially designed to be proved;
• programmed in ACL2 (and Common Lisp);
• efficient or not: irrelevant;
• tested;
• proved in ACL2.

In our approach, program2 is supposed to be equivalent to program1. But we
do not pretend to prove this equivalence: this option would lead us to a form of
ill-founded recursion. Our aim should be to use the highly reliable program2 to
perform automated testing of the efficient program1.

The following toy program will illustrate this idea:

(defun automated-testing ()
(let ((case (generate-test-case)))
(if (not (equal (program1 case)

(program2 case)))
(report-on-failure case))))

Note that it is an (unverified!) Common Lisp program, but not an ACL2 one
(at least, if program1 is not).

The relationship of these ideas with Model Checking is appealing. Even if the
field of application (reactive systems modeled as state machines) and the formal
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methods used (temporal logics) are different from ours, at least in the standard
literature on Model Checking [7], the underlying philosophy is the same. In
our case, the system (an already written program1) is abstracted into a model
(program2). Then, formal methods (theorem proving in our case) are used to
get theoretical properties of the model (the correctness of program2, proved in
ACL2). The final step is to interpret the results obtained from the model with
respect to reality (automated testing of the program1 against program2).

As in Model Checking, one of the important bottlenecks of the method is to
build a model which is an accurate representation of the system to be modeled. In
Model Checking one such difficult step occurs when an infinite system (that is to
say, a system with an unbounded number of possible reachable states) is modeled
by means of a finite graph (the condition of finiteness is mandatory, because the
checking of properties is done by exhaustive traversal of state spaces).

In our context, it is hopeless to apply our method to the whole Kenzo system.
The most important constraint is that we must restrict our ACL2 study to
the parts of Kenzo which are first-order1. This excludes large (and interesting!)
fragments of Kenzo, that should be analyzed by using tools such as Isabelle (as
in [1], [2] or [3]) or Coq.

Once a part of Kenzo with this characteristic has been chosen (let us call
it program1), the (heuristic) transformations we apply to construct the model
program2 are the following:

– iterations and loops are replaced by recursive functions (this step could be
automated);

– first-order functional programming is replaced by standard functions2;
– data structures are “flattened” to lists: objects, structs and arrays are re-

placed by convenient nested lists;
– destructive operations are replaced by the corresponding constructive ones

(this is a problematic point, but destructive updates appear in very precisely
located Kenzo fragments, and so this task is quite relaxed).

With these cautions, it is hoped that program2 accurately models program1,
and then our strategy could be safely applied.

3 Homological Algebra

A first application of the ideas presented in the previous section arises from two
different on-going projects devoted to analyze formally Kenzo [10], the system
for computing in Algebraic Topology.

1 Interestingly enough, this constraint seems related, in some sense, with the fi-
nite/infinite dichotomy evoked previously on Model Checking.

2 For instance, an occurrence of (mapcar #’cadr l) should be replaced by
(mapcadar l) where the new function mapcadar is simply:
(defun mapcadar (l) (if (endp l) l (cons (cadar l) (mapcadar (cdr l))))
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One of these projects is related to Koszul Homology, a module included re-
cently in the Kenzo system (see [20]). The Koszul complex (see [14]) is defined as
a free chain complex which can be presented in the following way. The generators
are expressions such as xa1

1 . . . xan
n ⊗ b1 ∧ . . . ∧ bn, where xa1

1 . . . xan
n is called the

monomial part and b1∧ . . .∧bn is called the exterior part. In the monomial part,
the xi are undeterminates and the exponents ai are simply integer numbers. In
the exterior part, each bi is or 0 or 1. In other words, as a Lisp datum a generator
can be represented as a pair ((a1 ... aN) (b1 ... bN)), where the elements
of the first part are integers and the elements of the second one are bits. The
free abelian group generated by these pairs is graded, by means of the degree∑n

i=1 bi. Then the Koszul differential on this graded free abelian group is defined
by the following formulae:

d(xa1
1 . . . xan

n ⊗ b1 ∧ . . . ∧ bn) :=
∑n

i=1(−1)sg(i)di(xa1
1 . . . xan

n ⊗ b1 ∧ . . . ∧ bn)

where

sg(i) denotes the number of 1’s in b1 ∧ . . . ∧ bi−1,
di(xa1

1 . . . xai

i . . . xan
n ⊗ b1 ∧ . . . ∧ bi ∧ . . . ∧ bn) := 0, if bi = 0

and

di(xa1
1 . . . xai

i . . . xan
n ⊗ b1 ∧ . . . ∧ bi ∧ . . . ∧ bn) :=

:= xa1
1 . . . xai+1

i . . . xan
n ⊗ b1 ∧ . . . ∧ 0 ∧ . . . ∧ bn, if bi = 1.

The first fact we are trying to verify with the help of ACL2 is that the mor-
phism defined by d is actually a differential; in other words, we are trying to
give a mechanized proof of dd = 0. (To be more precise, following the guidelines
explained in Section 2: we are trying to verify this property on an ACL2 function
d which has been obtained from the real Common Lisp encoding done in Kenzo.)

The second project we are dealing with is related to the automated proof of
the Eilenberg-Zilber theorem [11]. The statement of this result is too complex to
be presented here. For our purposes, it is enough to know that we are planning to
prove it on the chain complex associated to a universal simplicial set called in the
literature Δ [16]. The generators of the free chain complex are lists (z0, . . . , zn),
and the degree of such a list is n. The differential is then defined by the following
formulae.

d(z0, . . . , zn) :=
∑n

i=0(−1)idi(z0, . . . , zn)

where

di(z0, . . . , zi−1, zi, zi+1, . . . , zn) := (z0, . . . , zi−1, zi+1, . . . , zn).

Here, again, one of the first tasks to be done is to verify dd = 0.
The (pencil & paper) proofs of both instances of dd = 0 lie in the same kind

of argument:

– in the case of the Koszul complex, didj = −djdi, if i < j, and didi = 0;
– in the case of the chain complex of Δ, didj = −dj−1di, if i < j.
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That is to say, in both cases the morphism dd applied on any generator will
give, if no intermediary reduction is achieved, a combination where each term is
matched with its inverse. This idea led us to the statement (and ACL2 proof)
of a so-called “cancellation theorem” which could be applied, later on, in these
two case studies.

4 Canonical Forms

Before starting the formal specification of the cancellation theorem, let us first es-
tablish the elementary data structures involved in our computations and proofs.
Let us call any ACL2 object a generator (or gnrt, in an abbreviated manner).
Then a term (trm) is a pair (coef gnrt) where coef is a non-null integer and
gnrt is a generator. In Lisp terminology, extracting the coefficient of a term
consists in applying the car operator (the first element of a list), and extracting
its generator consists in applying the cadr operator (the second element of a
list).

A list of terms (lot) is, obviously, a list of terms ((coef0 gnrt0) ...(coefN
gnrtN)). And, finally, a combination is a list of terms strictly increasingly or-
dered with respect to the ACL2 total order (see lexorder in [12]) on generators.
In other words, combinations are a representation of the elements on the free
abelian group generated by all the ACL2 objects.

Usually, it is more convenient to work with canonical forms, that is to say
with combinations instead of with lots, both from the computing and the proving
points of view. Nevertheless, when trying to prove that a combination is null,
things can be slightly different: to work with sorted structures means to have a
very tight control of the order in which cancellations occur. On the contrary, to
have an unordered list of terms can allow the prover to organize the proof in a
more convenient way. This point will be made clearer in the following section.

With this idea in mind, it is a well-known fact that combinations can be
added in two different ways. Terms of the first combination can be added one-
by-one to the second combination. Or the two combinations can be concatenated
(without simplification) and then the resulting list of terms can be reduced to
canonical form. Let us assume that two ACL2 functions, called a2c and c-f, have
been programmed (the actual programming of both is a very simple exercise).
The first one, a2c, adds two combinations following the first strategy previously
mentioned. The second function, c-f takes as argument a list of terms and
constructs the combination being the canonical form of its argument.

Then the first relevant ACL2 theorem can be presented in the following way:

(defthm a2c-equivalence
(implies (and (cmbnp l1) (cmbnp l2))

(equal (a2c l1 l2)
(c-f (append l1 l2)))))

where cmbnp is the predicate checking whether an ACL2 object is a combination.
It is worth noting that ACL2, with the help of the natural lemmas on adding

a term, is capable of finding the right induction schemes without any human aid.



Executing in Common Lisp, Proving in ACL2 7

5 The Cancellation Theorem in ACL2

Now, we can prepare the statement of our main result: the cancellation theorem.
Its informal wording is as follows: “if in a list of terms each element has its inverse,
and the corresponding generator appears exactly twice, then the canonical form
of the list is the null combination”.

Due to the representation of terms, the inverse of a term is read simply as:

(defun inverse (trm)
(cons (- (car trm)) (cdr trm)))

The almost-zerop function checks if in a list l each element has its inverse
in l itself. In order to define it, we first consider the following generalization,
which checks if each element in a list l1 has its inverse in a second list l2.

(defun almost-zeropi (l1 l2)
(if (endp l1)

T
(and (member (inverse (car l1)) l2)

(almost-zeropi (cdr l1) l2))))

So, the almost-zerop function is given by:

(defun almost-zerop (l)
(almost-zeropi l l))

This property is not enough to ensure that the canonical form of l is null,
because an element could occur repeated in l. Then the key observation is that
in the applications considered (Koszul homology and chain complex associated
to the universal simplicial set Δ) the generators appear exactly twice in the
composition of the differential. Thus, the exactly-two function checks if each
element in a list appears exactly twice. Using the same strategy as above, we
first consider the natural embedding:

(defun eti (l1 l2)
(or (endp l1)

(and (= 2 (count-times (car l1) l2))
(eti (cdr l1) l2))))

And then we define:

(defun exactly-two (l)
(eti l l))

The hypotheses for the cancellation theorem are then collected in the following
function azp, where mapcadar extracts the list of generators of a given list of
terms.

(defun azp (l)
(and (almost-zerop l)

(exactly-two (mapcadar l))))
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The statement of the cancellation theorem looks as follows

(defthm cancellation-theorem
(implies (and (lotp l) (azp l))

(endp (c-f l))))

where lotp is the predicate checking if a given ACL2 object is a list of terms.
As usual in ACL2 (and, in fact, in any other theorem prover) the important

point in order to build a proof is to find the right lemmas. In the case of the
cancellation theorem the most important lemma is the following one.

(defthm essential-lemma
(implies (and (lotp l)

(member x l)
(member (inverse x) l)
(= (count-times (cadr x) (mapcadar l)) 2))

(not (member (cadr x) (mapcadar (c-f l))))))

This essential-lemma explains that if a term and its inverse belong to a
list of terms, and the generator of the term appears twice in the list, then the
generator does not appear in the canonical form of the list. Since generators in
the canonical form of a list l must proceed from generators in l, the cancellation
theorem follows from the essential-lemma.

In order to prove this essential-lemma a brick is the following lemma. It
particularizes the essential-lemma when the term x is the car of the list of
terms l.

(defthm essential-lemma-x
(implies (and (lotp l) (not (endp l))

(equal (car l) x)
(member x l)
(member (inverse x) l)
(= (count-times (cadr x) (mapcadar l)) 2))

(not (member (cadr x) (mapcadar (c-f l))))))

Once this lemma is proved, the following one is a simple corollary.

(defthm essential-lemma-inverse-x
(implies (and (lotp l) (not (endp l))

(equal (car l) (inverse x))
(member x l)
(member (inverse x) l)
(= (count-times (cadr x) (mapcadar l)) 2))

(not (member (cadr x) (mapcadar (c-f l)))))
:hints (("Goal" :do-not-induct t

:use (:instance essential-lemma-x (x (inverse x))))))

Now, the idea to prove the essential-lemma is to apply induction: a non-
empty list either has as first element x or (inverse x) or its rest (cdr in Lisp
terminology) has the same properties as above. Nevertheless, ACL2 is unable to
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find the convenient induction schema. We must aid it by defining the following
recursive function:

(defun induct-essential-lemma (x l)
(if (endp l)

nil
(if (equal (car l) x)

T
(if (equal (car l) (inverse x))

T
(induct-essential-lemma x (cdr l))))))

and then giving it to the prover as an induction schema:

(defthm essential-lemma
(implies (and (lotp l)

(member x l)
(member (inverse x) l)
(= (count-times (cadr x) (mapcadar l)) 2))

(not (member (cadr x) (mapcadar (c-f l)))))
:hints (("Goal" :induct (induct-essential-lemma x l))))

From this, the cancellation-theorem can be easily deduced in ACL2.

6 An Application of the Cancellation Theorem

Since the applications to Algebraic Topology are far complex to be explained
in detail, we prefer to present an elementary example of using the cancellation
theorem (together with the a2c-equivalence theorem introduced at the end of
Section 3). The example is also chosen to illustrate another way in which we can
help ACL2, by avoiding unsuitable induction schemes (the first way is to define
our own induction schemes as in Section 5).

The inverse of a combination (or the opposite, in additive terminology) is
simply programmed as:

(defun invc (l)
(if (endp l)

l
(cons (inverse (car l)) (invc (cdr l)))))

Now, one of the algebraic properties needed to ensure that we are really
working with a free abelian group is that this invc acts actually as an inverse
for combinations. In other words, we must prove the following result.

(defthm invc-is-inverse
(implies (cmbnp l)

(endp (a2c l (invc l))))
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To this aim, the cancellation theorem can be used by simply proving:

(defthm invcIsInverse-lemma-preparation-lemma
(implies (cmbnp l)

(and (lotp (append l (invc l)))
(azp (append l (invc l))))))

together with the a2c-equivalence theorem.
Now, the unique technical problem when trying to build this proof in ACL2

is the following elementary property.

(defthm member-append-twice-lemma
(implies (member x (append l l))

(member x l)))

ACL2 is unable to prove it directly, since any recursion schema would be run
on the list l, obtaining a property which is not true anymore. The solution in this
case is to state the right generalization lemma (this generalization is required
due to our way of working in ACL2, but it seems unnecessary in a traditional
by hand proof):

(defthm member-append-my-lemma
(implies (and (member x (append l1 l2))

(not (member x l1)))
(member x l2)))

In this case, ACL2 finds automatically the right induction, and so the complete
proof. Going back to our technical lemma, a simple hint gives the solution:

(defthm member-append-twice-lemma
(implies (member x (append l l))

(member x l))
:hints (("Goal" :use

(:instance member-append-my-lemma (l1 l) (l2 l)))))

A final word on this small proof. It is worth noting that the application of
member-append-my-lemma amounts to an instance of the exclude-middle prin-
ciple. This application poses no problem with respect to constructiveness, since
every predicate test involved is decidable.

7 Conclusions and Further Work

The last technical sections show how ACL2 is a very good tool when dealing
with inductive reasoning, as it is usual in the field of algebraic manipulation.
ACL2 finds by itself the natural induction schemes in many cases, and it allows
the prover, in this particular aspect, to automate much more tasks than other
tools as Isabelle or Coq. This does not imply, by no means, that ACL2 allows the
user a higher-level or abstract view on proofs: one stops frequently on frustrating
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technical details and proofs that must be accomplished before ACL2 deploys its
very powerful heuristics. As seen in Section 5, even when ACL2 does not find the
right induction scheme, the prover can be helped by explicit hints from the user.
In Section 6, we showed another way of guiding ACL2: by introducing convenient
generalization lemmas.

Going back to Section 2, and to the initial proposal of the paper, the auto-
mated testing of Kenzo fragments could be applied to the case of the differential
in the Koszul complex, whose implementation is tricky and efficient in Kenzo,
and could be matched with the much more explicit (and verbose) version we are
trying to verify in ACL2.

With respect to future work, it is clear that many pieces of the puzzle are
still missing. It is necessary to finish the proofs in cases of the Koszul complex
and of the chain complex of Δ, allowing us to deduce dd = 0 by applying our
cancellation theorem. Even then, much effort should be employed to conclude
the formalization of both the Koszul Homology [14] package and the Eilenberg-
Zilber theorem [11]. Another critical issue would be to find a good strategy
for test generation, in order to be able to give a smart implementation of the
function generate-test-case evoked in Section 2.

Another line of research consists in modeling this same example (the cancel-
lation theorem) in Isabelle [17], Coq [5] and FoCaL [6], in order to evaluate and
compare them, and with respect to ACL2 [12], focusing on our particular area
of interest: verified Computer Algebra.
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Abstract. In previous papers we described the implementation of a sys-
tem which combines mathematical object generation, transformation and
filtering, conjecture generation, proving and disproving for mathemati-
cal discovery in non-associative algebra. While the system has generated
novel, fully verified theorems, their construction involved a lot of ad hoc
communication between disparate systems. In this paper we carefully
reconstruct a specification of a sub-process of the original system in a
framework for trustable communication between mathematics systems
put forth by us. It employs the concept of biform theories that enables
the combined formalisation of the axiomatic and algorithmic theories
behind the generation process. This allows us to gain a much better
understanding of the original system, and exposes clear generalisation
opportunities.

1 Introduction

Over the last decade several environments and formalisms for the combination
and integration of mathematical software systems [2, 15] have been proposed.
Many of these systems aim at a traditional automated theorem proving ap-
proach, in which a given conjecture is to be proved or refuted by the cooperation
of different reasoning engines. However, they offer little support for experimental
mathematics in which new conjectures are constructed by an interleaved process
of model computation, model inspection, property conjecture and verification.
And while for example the Theorema system [4] supports many of these ac-
tivities, there are currently no systems available that provide, in an easy to use
environment, the flexible combination of diverse reasoning systems in a plug-and-
play fashion via a high level specification of experiments, despite some previous
research in that direction [1, 3].

[8, 14] presents an integration of more than a dozen different reasoning sys-
tems — first order theorem provers, SAT solvers, SMT solvers, model genera-
tors, computer algebra, and machine learning systems — in a general bootstrap-
ping algorithm to generate novel theorems in the specialised algebraic domain
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of quasigroups and loops. While the integration leads to provably correct re-
sults, the integration itself was achieved in an ad-hoc manner, i.e., systems were
combined and recombined in an experimental fashion with a set of custom-
built bridges that not only perform syntax translations but also certain filtering
functions.

In this paper we report on a rational reconstruction of an interesting sub-
process of the bootstrapping algorithm, namely the generation of isotopy in-
variants (presented in Sec. 2), using the framework for trustable communication
between mathematics systems that was put forth in [6]. It employs the con-
cept of biform theories (Sec. 3) that enables the combined formalisation of the
axiomatic and algorithmic theories behind the generation process. It turns out
that it is surprisingly difficult to separate the syntactic, semantic, and algorith-
mic level of the current implementation. We present the formalisation in terms
of the necessary semantic and syntactic concepts in Sec. 4 and of biform theories
describing the actual computations in Sec. 5. The aim of this work is to expose
the general principles behind the combination and communications of the single
systems. It is currently only a purely theoretical reconstruction of the current
implementation, and we do not have or even plan an implementation of the pro-
cess in the framework of biform theories. However, the work should ultimately be
used in the design of a flexible environment for experimental mathematics that
enables a user to specify complex experiments on a high level without the need
of detailed knowledge of the underlying logical relations and the particularities
of the integrated systems.

Note that, as in [6], we abstract out the details of the idiosyncratic syntax of
each of the systems. We use a uniform abstract syntax (in this case, we need
4 separate languages, each embedded in the other) for the specification. This
allows us to abstract out the tedious engineering of transformations in and out
of the actual systems. On the other hand, any transformation beyond trivial
parsing and pretty-printing is explicitly specified.

The specification we present involves (at least) 3 levels of mathematical dis-
course: using the language of mathematics, we are specifying (syntactically) the
semantics of a computer system which manipulates (the syntax of) mathematical
theories, which are themselves inhabited by mathematical objects represented
syntactically. Each level also possesses semantic models, which is ultimately what
we want, but for computer manipulation, must be handled syntactically. Sepa-
rating these languages cleanly is a difficult task – as the reader will soon witness.

2 Problem

The particular problem we are concerned with is the process of generating isotopy
invariants for loops, which is part of the overall classification procedure presented
in [14]. We give a brief, high level description of the procedure here. The more
formal, mathematical details and definitions are presented in Sec. 4.

A loop is a quasigroup with identity, i.e., an algebraic structure (L, ◦) sat-
isfying the following two axioms: ∀a, b. (∃x.x ◦ a = b) ∧ (∃y.a ◦ y = b) and
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∀x.x ◦ e = e ◦ x = x. We say two loops (L, ◦) and (M, ∗) are isotopic to each
other—or L is an isotope of M—if there are bijective mappings α, β, γ from
L to M such that, for all x, y ∈ L, α(x) ∗ β(y) = γ(x ◦ y) holds. A property
P , that is preserved under the isotopy mapping (i.e., if P holds for L then it
also holds for all its isotopes) is called an isotopy invariant. In our approach we
generate universal identities, a particular type of isotopy invariants, presented
by Falconer [9]. To find universal identities we have implemented the procedure
presented in Fig 1.

Bootstrapping Algorithm

order n exists

Finder Finder Finder

If Loops of

If UID is 

If Loops of order 

Generate Universal Identity

MaceMaceMace

Generate Equations

Vampire Vampire E−Prover E−Prover

isotopy invariant

(LISP)

at most 8 exist

(LISP)

Isotopy

to attempt

Set of

Invariants

Invariants

Isotopy

Fig. 1. Current implementation

The basic idea of our procedure
is to find identities (i.e., universally
quantified equations) that hold for
some loop, by first generating iden-
tities and then checking, which iden-
tity has a non-trivial loop satisfy-
ing it, using a model generator. All
identities for which a loop exists are
then transformed into derived identi-
ties (see Sec. 4 Def. 6). All derived
identities for which we can prove, by
means of a first order automated the-
orem prover, that they are invariant
under isotopy are universal identities.
Note that, for each universal identity,
we show that it is an invariant under
isotopy independently of the size of
a loop. We can therefore reuse these
universal identities in different clas-
sifications. Consequently, we collect
universal identities in a pool of con-
firmed isotopy invariants, which we
use in the overall bootstrapping al-
gorithm. That is, during the classi-
fication of loops of a particular size
n, we draw on the pool of invari-
ants by first filtering them again using
another model generator to generate
loops of size n that satisfy the invari-
ant. We then extract those invariants
for which at least one loop of order n
exists, and we use only these as poten-
tial discriminants. Note that the filter
discards any invariants which cannot
solve any discrimination problem, as no loop of size n satisfies the invariant
property.
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So far we have generated and verified 8, 530 isotopy invariants. These have
been employed as one means, among others, to generate two novel classifications
for loops of order 6 and 7 with respect to isomorphism. Observe, that we currently
concentrate only on the subprocess for generating isotopy invariants and that
the general bootstrapping algorithm is not the subject of the paper. For more
details and results of the classification of quasigroups and loops with respect to
both isomorphism and isotopism we refer the reader to [8, 14].

3 Biform Theories

The notion of a “biform theory” was introduced in [13] as the basis for ffmm,
a Formal Framework for Managing Mathematics. Informally, a biform theory
is simultaneously an axiomatic and an algorithmic theory. We present here a
formulation of a biform theory that is simpler than the one given in [13].

General Logics. A general language is a pair L = (E ,F) where E is a set of
syntactic entities called the expressions of L and F ⊆ E is a set of expressions
called the formulas of L. For example, if F is a first order language, then LF =
(T ∪ F ,F) is a general language where T and F are the sets of terms and
formulas of F , respectively. In the rest of this paper, let L = (E ,F) be a general
language.

A general logic is a set of general languages with a notion of logical conse-
quence. In the rest of this paper, let K be a general logic. L is a language of K
if it is one of the general languages of K. If L is a language of K and Σ ∪ {A}
is a set of formulas of L, then Σ |=K A means A is a logical consequence of Σ
in K. For example, let FOL be a general logic representation of first order logic
such that L is a language of FOL iff L = LF for some first order language F
and Σ |=FOL A means A is a logical consequence of Σ in first order logic.

An axiomatic theory in K is a pair T = (L, Γ ) where L = (E ,F) is a language
of K and Γ ⊆ F . L is the language of T , and Γ is the set of axioms of T . A
formula A of L is a logical consequence of T if Γ |=K A.

Transformers. For n ≥ 0, an n-ary transformer in L is a pair Π = (π, π̂)
where π is a symbol and π̂ is an algorithm that implements a (possibly partial)
function fπ̂ : En → E . The symbol π serves as a name for the algorithm π̂. There
is no restriction on how the algorithm is presented. For example, it could be a a
λ-expression in L or a program written in Lisp or Haskell (or even C or Java).

Let dom(Π) denote the domain of π̂, i.e., the subset of En on which fπ̂ is
defined. Suppose E1, . . . , En are expressions in E . If (E1, . . . , En) ∈ dom(Π),
the expression π(E1, . . . , En) denotes the output of π̂ when given E1, . . . , En as
input, i.e., it denotes fπ̂(E1, . . . , En) ∈ E (and is thus defined). If (E1, . . . , En) ∈
dom(Π), π(E1, . . . , En) does not denote anything (and is thus undefined). The
expression π(E1, . . . , En) is not required to be in E ; it will usually be an expres-
sion of the metalanguage of L but not of L itself.

Example 1. Suppose LF = {EF ,FF } is the general language corresponding to a
first order language F . Let Π = (π, π̂) be a unary transformer in LF such that:
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1. π(E) is defined iff E ∈ FF .
2. If π(A) is defined, it denotes a formula B ∈ FF that is in prenex normal

form and is logically equivalent to A.

That is, the algorithm π̂ transforms any formula of LF into a logically equivalent
formula in prenex normal form. The expression π(E) cannot be an expression
in LF (without some mechanism, such as Gödel numbering, for formalising the
syntax of LF in LF itself). �

Example 2. Suppose LF = {EF ,FF } is again the general language corresponding
to a first order language F . Let Π = (π, π̂) be a ternary transformer in LF such
that:

1. π(E1, E2, E3) is defined iff E1 is a term of F , E2 is a variable of F , and E3

is a formula of F .
2. If π(t, x, A) is defined, it denotes the result of simultaneously substituting t

for each free occurrence of x in A.

That is, given t, x, A, the algorithm π̂ transforms the formula A into the formula
A[x �→ t]. Again the expression π(E1, E2, E3) cannot be an expression in EF . �

Example 3. Let STT be a general logic representation of simple type theory.
Suppose T = (L, Γ ) is an axiomatic theory of a complete ordered field in STT
and that we have defined in T a type real of real numbers and the basic concepts
of calculus such as limits, continuity, derivatives, etc. Let Π = (π, π̂) be a unary
transformer in L such that:

1. π(E) is defined iff E is an expression of L of type real → real.
2. If π(E) is defined, it is an expression of L of type real → real that denotes

the derivative of the function denoted by E.

That is, π̂ is an algorithm that differentiates expressions that denote functions
on the real numbers. �

An algorithmic theory is a pair T = (L, Δ) where L is a general language and Δ
is a set of transformers in L. L is called the language of T , and Δ is the set of
algorithms of T . For more on transformers, see [12, 13].

Rules. A rule in L is a pair R = (Π, M) where:

1. Π = (π, π̂) is an n-ary transformer in L.
2. M is a formula that uses π to relate the values of the inputs to π̂ to the

value of the output of π̂.

The transformer of R, written trans(R), is Π , and the meaning formula of R,
written mean(R), is M . The meaning formula M , which specifies the semantic
relationship between the tuple of inputs and the output of the algorithm π̂,
will usually be an expression of the metalanguage of L but not of L itself. For
each n-tuple I = (E1, . . . , En) of inputs to π̂, we assume that M reduces to
a formula MI of L which is called the instance of M with respect to I. An
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instance of M specifies the relationship between the values of a given tuple of
input expressions and the value of the resulting output expression. Let inst(R)
be the set of instances of M . M can often be conveniently expressed as a formula
schema.
Example 4. Let R = (Π, M) where:
1. Π = (π, π̂) is the transformer in LF given in Example 1.
2. M is the formula schema A ≡ π(A) where A is a formula of LF .

If A is the formula p(c) ⊃ ∀x.q(x) (where c is a constant) and the result of
applying π̂ to (A) is ∀x.p(c) ⊃ q(x), then (p(c) ⊃ ∀x.q(x)) ≡ (∀x.p(c) ⊃ q(x)) is
the instance of M with respect to (A). �

Example 5. Let R = (Π, M) where:
1. Π = (π, π̂) is the transformer in LF given in Example 2.
2. M is the formula schema (x = t ∧ A) ⊃ π(t, x, A) where t is a term, x is a

variable, and A is a formula of LF and t is free for x in A.

If t is a term, x is a variable, and A is f(x, y) = g(x), then (x = t ∧ f(x, y) =
g(x)) ⊃ f(t, y) = g(t) is the instance of M with respect to (t, x, A). �

Example 6. Let R = (Π, M) where:
1. Π = (π, π̂) is the transformer in the language L of the theory T given in

Example 3.
2. M is the formula schema derivative(E) = π(E) where E is of type real → real.

derivative is an expression of L of type (real → real) → (real → real) that
maps a function to its derivative. M thus asserts that the derivative of the
function denoted by E is the function denoted by π(E).

If E is λx : real.x2, then derivative(λx : real.x2) = (λx : real.2 ·x) is the instance of
M with respect to (E). �

For the sake of convenience, we will view a formula A of L as a (transformer-
less) rule in L and assume that trans(A) is undefined, mean(A) = A, and
inst(A) = {A}.

Biform Theories. A biform theory in K is a pair T = (L, Ω) where L is a lan-
guage of K and Ω is a set of rules in L. (Ω may include formulas of L viewed as
transformer-less rules.) L is the language of T , and Ω is the set of axioms of T .

T can be viewed as simultaneously both an axiomatic theory and an algorith-
mic theory. The axiomatic theory of T is the axiomatic theory Taxm = (L, Γ ) in
K where Γ =

⋃
R∈Ω inst(R), while the algorithmic theory of T is the algorithmic

theory Talg = (L, Δ) where Δ = {trans(R) | R ∈ Ω and trans(R) is defined}.
The axioms of T—which are formulas and rules—are the background assump-

tions of T in an implicit form. The axioms of Taxm—which are formulas alone—
are the background assumptions of T in an explicit form. A rule R in L is a
logical consequence of T if, for all formulas A ∈ inst(R), A is a logical conse-
quence of Taxm. Thus, the axioms of T are trivially logical consequences of T .
Notice also that, since we are assuming that the formulas of L are rules in L,
every logical consequence of Taxm is also a logical consequence of T .
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4 Definitions

We now render the problem from Sec 2 precisely by giving the relevant formal
definitions. To facilitate the formal specification as biform theories in Sec 5 we
painstakingly distinguish between the semantics of the mathematical concepts,
the languages necessary to express them, and the purely syntactic expression.

4.1 Semantic Concepts

Definition 1. A loop is a non-empty set G together with a binary operation ◦
and a distinguished element e ∈ G such that

∀a, b ∈ G. (∃x ∈ G.x ◦ a = b) ∧ (∃y ∈ G.a ◦ y = b) and ∀x ∈ G.x ◦ e = e ◦ x = x.

Definition 2. Let G be a loop with binary operation ◦, then we can define two
additional binary operations / and \ by
1. ∀x, y ∈ G.x ◦ (x\y) = y and ∀x, y ∈ G.x\(x ◦ y) = y
2. ∀x, y ∈ G.(y/x) ◦ x = y and ∀x, y ∈ G.(y ◦ x)/x = y

Definition 3. Let G, H be two loops with respective binary operation ◦ and ∗.
We say G is isotopic to H if there are bijective mappings α, β, γ from G to H
such that for all x, y ∈ G, α(x) ∗ β(y) = γ(x ◦ y) holds.

Definition 4. Let G be a loop and let P be a property that holds for G. We call
P an isotopy invariant if P is preserved under the isotopy mapping (i.e., if P
holds for G than it also holds for all its isotopes).

Definition 5. Let G be a loop with binary operation ◦. w is a word of G if it is a
combination of elements of G with respect to the loop operation ◦. Let w1, w2 be
two words in G, then w1 = w2 defines a loop identity if it holds for all elements
of G.

Definition 6. Let G be a loop with binary operations ◦, \, /. Given a word w in
G, we define its corresponding derived word w by
1. if w = x, x ∈ G, then w = x;
2. if w = u ◦ v, then w = (u/y) ◦ (z\v), where u, v, y, z ∈ G.
Given a loop identity w1 = w2 of G, we define its corresponding derived identity
as w1 = w2.

Definition 7. Let G be a loop with binary operations ◦, \, / and w1 = w2 be a
derived identity in G. Then w1 = w2 is a universal identity if it is an isotopy
invariant.

4.2 Languages

In order to express the definitions of the syntactic concepts we give the necessary
languages by stepwise extending the basic language of first order logic with
equality (FOL+EQ). This will later enable us to define biform theories with
minimal languages. Generally, we need a fair bit more machinery to define our
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various meaning functions; thus we will freely use Simple Type Theory (STT)
[7, 10] as our general environment.

As a general typographical convention, we will underline all the symbols when
we refer to the syntactic version of a symbol we already have in our semantics.
We will not however underline variables, to ease (somewhat) the readability of
the results. We assume that the reader is proficient enough in FOL+EQ and
STT so that we do not need to repeat their syntactic definition here.

We first extend FOL+EQ to the language Loop by adding a binary function
◦ and a constant e. In a next step we add the two binary operations \ and /

to Loop to obtain Loop′. In fact, in Loop′, we need two loops, so we in fact
add e1, ◦1, \1, /1 and e2, ◦2, \2, /2 to Loop′. While these languages are sufficient
to express the syntactic objects manipulated during the computation, we also
need to express the meaning formulas for transformers in the language of a
biform theory. This will necessarily be (at least) a second order logic, as we are
quantifying over loops. It also is much easier to specify if we have access to a bit
more machinery, such as lambda expressions and unique choice. We therefore
use STT, as a superset of Loop′, for this purpose. Thus altogether we have the
following sequence of languages: FOL+EQ ⊂ Loop ⊂ Loop′ ⊂ STT

4.3 Syntactic Concepts

Let V be a set of variables, with xi ∈ V . Let y, z be two new symbols not in V
and let V ′ = V ∪ {z, y}.

Word ::= xi | e | Word ◦ Word
Identity ::= ∀x.Word = Word
Word′ ::= xi | e | (Word′ \ y) ◦ (z / Word′)
DerivedIdentity ::= ∀x.Word′ = Word′

A Word is a word in the language of loops, composed of variables, an identity
element e and an operation − ◦ −, where all variables of V are understood to
be universally quantified. A Word′ is a word in the extended language of loops,
composed of variables, and identity element, operation and two new operators,
/ and \, where again variables (V ′) are universally quantified. Then Identity and
DerivedIdentity are identities over the respective languages.

We also need syntactic representations of various axioms. For example, we
have that

CircAxm =̂ ∀a, b. (∃x.x◦a = b)∧(∃y.x◦y = b) in Loop.
IdAxm =̂ (∀x.x◦e = x)∧(∀x.e◦x = x) in Loop.
DivLAxm =̂ (∀x, y.x◦(x \ y) = y)∧(∀x, y.x \ (x◦y) = y) in Loop′

DivRAxm =̂ (∀x, y.(y / x)◦x = y)∧(∀x, y.(y◦x) / x = y) in Loop′.

These express respectively the axiom for ◦, the identity e, the left division \ and
the right division /.

Actually, to describe the full semantics, we need two copies of the above,
for two different loops, whose components we’ll naturally denote (e1, ◦1, \1, /1)
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and (e2, ◦2, \2, /2) respectively. Since we are in STT, we could have easily have
written the above as functions from syntax to syntax, but that would have
made the presentation too opaque. We also need to represent a finite domain
syntactically. But this essentially amounts to creating n unique names.

We can then continue thus, for all the various concepts defined semantically in
the previous section, which we use syntactically later (like bijective). We should
also define the full syntax for a language of proofs (as the language for the
output of one of our intermediate transformers below), but since the actual
implementation ignores these proofs, it suffices to posit that this language exists.

5 Specification

We can view the generation of isotopy invariants from derived identities and their
selection as possible discriminants for loops of a given size n as a sequence of
single computational processes as displayed in Fig. 2. Each process accomplishes
a different function in the overall computational process, e.g., is a source of
equations, transforms expressions, or filters with respect to different criteria.

Find
Model
of size n

Sink/Source Filter

Generate
Equation

Source Filter

Rewrite
Equation

Prove
Invariant

Filter

Store
Invariant

Yes Yes
Find
Nontrivial
Model

Yes

Transformation

Fig. 2. Abstract view of the process

For each module, we have a background (biform) theory that expresses the
language and axioms necessary to describe the rules (and thus the inputs and
outputs) encapsulated in that module. Using appropriate translations and inter-
pretations, we can set up a communication channel (a connection in the language
of [6]). We give detailed formal specifications for each process and their commu-
nications.

We can also give a specification for the global problem for generating universal
identities in general, which corresponds to the dashed box in Fig. 2. This results
in a transformer that operates on a more abstract level. We start by giving
the formal specification for it, before going into the details of the component
processes.

Concretely, for the remainder we let K be the general logic based on STT
as general language. We then define the biform theory for the overall process
consisting as axiomatic theory Taxm = (L, Γ ) and algorithmic theory Talg =
(L, Δ), where L = STT, Γ contains all axioms defined in 4.1, and Δ contains
one transformer Π = (π, π̂).
1. π() = Generate Universal Identity() is always defined, as it takes no

input. It returns a set of syntactical structures DerivedIdentity, as defined in
Sec. 4.3
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2. π̂ is the implementation of Generate Universal Identity as presented
in [14].

3. M is the meaning formula

∀U ∈ Generate Universal Identity().U ∈ DerivedIdentity

∧Subst(CircAxm, e1, ◦1, \1, /1) ∧ Subst(IdAxm, e1, ◦1, \1, /1)
∧Subst(DivLAxm, e1, ◦1, \1, /1) ∧ Subst(DivRAxm, e1, ◦1, \1, /1)
∧Subst(CircAxm, e2, ◦2, \2, /2) ∧ Subst(IdAxm, e2, ◦2, \2, /2)
∧Subst(DivLAxm, e2, ◦2, \2, /2) ∧ Subst(DivRAxm, e2, ◦2, \2, /2)
∧Subst(U, e1, ◦1, \1, /1) ∧ ∃α, β, γ.bijective(α) ∧ bijective(β) ∧ bijective(γ)
∧∀x, y.α(x)◦2β(y) = γ(x◦1y) ⊃ Subst(U, e2, ◦2, \2, /2).

In the formula M the predicate Subst is shorthand for a syntactic replacement
of the symbols e, ◦, , \ / in U by their indexed counterpart to obtain two copies
of loops. This can be implemented similar to the transformer for substitution in
Example 2. However, we omit this level of detail here. Observe also that bijective
is shorthand for the formulas representing the bijectivity property.

For the rest of this section, it is useful to remember that we use π for the
name of the function (transformer) while π̂ is its implementation. Whenever a
transformer has a more natural name than π, we use that name instead.

5.1 Source: Generating Equation

The first step generates a set of identities. The language of the biform theory
is L = Loop and the axiomatic theory is Taxm = (L, {}). We do not need any
axioms as the computation of this module is only a generation of constructs in our
language and, therefore, not based on any logical consequences. In Talg = (L, Δ),
Δ contains one transformer Π = (π, π̂).

1. π() = Generate Identity() is always defined, as it takes no input. It returns
a set of syntactical structures Identity.

2. π̂ is the implementation of Generate Identity that corresponds to the
grammar given for Identity in Sec. 4.3.

3. M is ∀i ∈ Generate Identity.i ∈ Identity.

Here M simply states that the elements of the generated set are indeed members
of the syntactic class of identities.

5.2 Filter: Find Non-trivial Model

The computation defined in this module is more complicated to formalise since
we take a set of identities as input, for each one we try to generate a model of
some specified size, and only output those identities for which we could success-
fully generate a model. Its formalisation can be achieved by using one trans-
former in the context of the other. We have a transformer modelling the general
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computation of a model generator that operates in the context of a transformer
for the particular generation of models of loops satisfying given identities. In
addition this latter transformer performs the actual filtering by discarding those
identities for which no models exist.

The language of the biform theory is Loop and Taxm = (L, Γ ), where Γ con-
tains the axioms given in definition 1. The algorithmic theory Talg contains two
transformers: Π1 = (π1, π̂1) specifying the computation of the model genera-
tor and Π2 = (π2, π̂2) specifying the filtering operation carried out on a set of
identities.

1. π1(S, D) = Generate Model(S, D) is defined iff S is a set of syntactic for-
mulas and D is a syntactic representation of the domain. It returns set of
syntactic representation of models if one exists, i.e., for each constant element
in the input a relation in D satisfying E.

2. π̂1 is the model generation process performed by some integrated model
generator.

3. M is ∀m ∈ Generate Model(S, D).(m |= S). Note that m is a model with
interpretations of the symbols of S given as functions represented by sets of
ordered pairs.

Given the transformer for general model generation, we now define the actual
filter operation as:

1. π2(E, n) = Filter Identities(E, n) is defined iff E is a set of Identity n is
a positive integer. It also returns a set of syntactical structures Identity.

2. π̂2 is the implementation of Filter Identities that generates the syntactic
representation of the domain of size n given to π1 and applies π1 to each
element in E.

3. M is ∀i ∈ Filter Identities(E, n).Generate Model({i}∪Γ, Dom(n)) = ∅.

Observe that in M above Dom(n) is a schema specifying the set of domain
elements computed in Filter Identities, which could itself be specified using
a transformer. Observe also that we have slightly simplified the formalisation,
in that it only takes domains of one size, rather than a range of domain sizes.

We note that both transformers are very general and do not depend on
the particular biform theory they live in. In particular Generate Model works
on any first order language regardless of the language of the biform theory.
Here the theory serves as a way to parameterise the input to the transformer.
Filter Identities performs filtering with respect to model existence. Likewise
it could filter with respect to non-existence of models or return computed mod-
els by interpreting them in the biform theory. Note that Filter Identities is
a total set-to-set function, and the underlying implementation is total as well;
even Generate Model is a total function (it always terminates), however it may
return an empty result1.

1 In Haskell, we could say that Generate Model belongs in the Maybe Monad.
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5.3 Transformation: Rewrite Equations

This step rewrites loop identities to derived identities. The language of the biform
theory is L = Loop′ and the axiomatic theory is Taxm = (L, Γ ) where Γ contains
the axioms given in Definitions 1, 2, and 6. In Talg = (L, Δ), Δ contains one
transformer Π = (π, π̂).

1. π(E) = Generate Derived Identity(E) is defined iff E is a set of Identity.
It returns a set of syntactical structures DerivedIdentity.

2. π̂ is the implementation of the rewrite system given in Def. 6 that performs
syntactic rewriting of an Identity into a DerivedIdentity.

3. M is ∀i ∈ E.∃!d ∈ Generate Derived Identity(E).Γ |= i = d.

5.4 Filter: Prove Invariant

Similar to the specification of the filter in Sec. 5.2 this process requires the
combination of two transformers. One for the general proving process and one
that performs the actual filtering.

We define the biform theory for L = STT, with Loop′ as a distinct sub-
language, Taxm = (L, Γ ), where Γ contains all axioms defined in 4.1, and Talg

containing two transformers: Π1 = (π1, π̂1) specifying the computation of the
theorem prover and Π2 = (π2, π̂2) specifying the filtering operation.

1. π1(A, C) = Prove(A, C) is defined iff A is a set of syntactic formulas in
Loop′ and C is a formula in Loop′. It returns a syntactic representation of
a proof if one exists.

2. π̂2 is the theorem proving process performed by some automated theorem
prover. It takes the elements of A as assumptions and C as a conclusion.

3. M is Proves(Prove(A, C), A � C)

Here the predicate Proves checks the correctness of the derivation. The formal-
isation of this predicate depends on the calculus of the integrated prover and
is generally very lengthy to formalise. Since we are not interested in examining
proofs but only their existence at this point, we do not go into any detail here.

Given the transformer for theorem proving, we now define the actual filter
operation as:

1. π2(E) = Filter Derived Identities(E) is defined iff E is a set of expres-
sions of the form DerivedIdentity. It also returns a set of DerivedIdentity.

2. π̂2 is the implementation of Filter Derived Identities that generates an
assumption set A from the syntactic representation of the elements of Γ
computes for each element i of E Prove(A, i). It returns a set of all elements
in E for which a proof exists.

3. The meaning function M is of the same form as the meaning function of
the Generate Universal Identity transformer, with the exception that we
now universally quantify over U ∈ Filter Derived Identities(E).
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Observe that the Subst is the symbol substitution transformer already used at
the beginning of this section.

The result of this last transformer, the set of syntactic universal identities,
can now be stored for later use. Choosing from this store is again achieved
with a filter that uses model generation, which is similar to the transformer
Filter Identities above. Due to lack of space we omit the detailed formalisa-
tion of these processes here.

6 Conclusions

We have presented a first step towards a rational reconstruction of the classifi-
cation procedure for finite algebras in [8, 14]. The use of biform theories enables
us to express both axiomatic and algorithmic properties of the procedure while
clearly distinguishing syntactic, semantic, and algorithmic levels. Although the
generation of universal identities is only a small sub-process of the overall clas-
sification, its formalisation is surprisingly involved.

This is not really due to the design and current implementation of the al-
gorithm, but rather because some of the operations necessarily intermix syntax
and semantics. Keeping straight what has to be in FOL+EQ, what is safely
in STT, and what is in fact in the meta-language is very difficult. For exam-
ple when generating models with respect to a particular domain, the result is a
semantic entity. Nevertheless, models have to be interpreted as syntax not only
to express the meaning function but also in case the models are used in fur-
ther computations and syntactic manipulations. This also has the effect that the
given domain elements have to be incorporated into the language of the biform
theory, which is currently not possible and subject to future work.

On the other hand, communication between the components is very simple,
since it is all done via FOL+EQ or conservative extensions such as Loop and
Loop′. The necessary interpretations [6] between these theories are straightfor-
ward, unlike the more general case where communication occurs amongst more
disparate logics.

The current formalisation already exposes some generalisations. In particular
many of the sub-processes can be expressed as a mixture of computation and
filtering, where the computation is often independent of the particular theory. It
also becomes apparent what is actual input and what has to be specified in the
background theory of a process. This information could be exploited to design
an environment enabling mathematical experimentation by combining systems
on a high level, such that it is only necessary to specify input, output and parts
of the background theory without interaction on the actual logical level.

Our formalisation is certainly not the only possible approach to reconstruct
the generation process. Indeed we could view the entire process as a sequence
of recursive generators and filters. E.g., the first three boxes in Fig. 2 could
be combined in a single transformer that acts as a generator for the next filter.
Comparing different specifications and combinations of transformers for the same
process could expose possible optimisation opportunities for the overall process.
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As we have already discussed, biform theories—particularly the meaning for-
mulas of rules—are difficult to formalise in a traditional logic without the means
to reason about syntax. The paper [11] illustrates how biform theories can be
formalised in Chiron, a derivative of von-Neumann-Bernays-Gödel (nbg) set
theory that directly supports reasoning about the syntax of expressions. After
an implementation of Chiron is produced, we would like to use Chiron to fully
formalize the work presented in this paper.
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Abstract. We address some aspects of a system architecture for math-
ematical assistants that integrates calculations and deductions by com-
mon infrastructure within the Isabelle theorem proving environment.
Here calculations may refer to arbitrary extra-logical mechanisms, op-
erating on the syntactic structure of logical statements. Deductions are
devoid of any computational content, but driven by procedures external
to the logic, following to the traditional “LCF system approach”. The lat-
ter is extended towards explicit dependency on abstract theory contexts,
with separate mechanisms to interpret both logical and extra-logical con-
tent uniformly. Thus we are able to implement proof methods that oper-
ate on abstract theories and a range of particular theory interpretations.
Our approach is demonstrated in Isabelle/HOL by a proof-procedure for
generic ring equalities via Gröbner Bases.

1 Introduction

The requirements for mathematical assistants come in various and sometimes
conflicting flavors: efficient calculations (computer algebra systems have excelled
here), deduction with a precise notion of logical correctness (the theorem prov-
ing approach), and ability to work relative to abstract theory contexts as in
traditional mathematics. In the present paper we address the issue of combining
calculations and deductions with theory abstraction and interpretation in the
Isabelle theorem proving environment [17]. Since calculations are external to the
logic, we may employ arbitrary programming techniques, with full access to the
syntactic structure of statements. Deductions are driven by such external proce-
dures, to replay proofs via primitive inferences, following the traditional “LCF
system approach” of correctness-by-construction introduced by Milner [10].

Proof methods are typically inhomogeneous because of a natural division of
computing results vs. checking witnesses within the logic. From the algorithmic
perspective it is usually harder to produce a result than to check it, e.g. consider
long division of polynomials. From the logical point of view, results may emerge
spontaneously by an external “oracle”, but checking requires tedious inferences.

Implementing proof tools by orchestrating non-trivial calculations and deduc-
tions is a difficult task. In providing a link to abstract theory mechanisms we
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contribute to systematic development of advanced methods, being organized ac-
cording to the logical context required at each stage. Thus we transfer principles
of modular program and theory development towards proof procedures.

Related work. There are mainly two other approaches in implementing proof
procedures in theorem proving environments: interpretation and assimilation.

Interpretation means that the proof system provides a specific language for
describing procedures, being interpreted at run-time and reduced to basic in-
ferences eventually. This language is usually limited to common expressions for
combining terms, theorems, tactics etc. Even if it is made computationally com-
plete, there is normally no access to arbitrary libraries and components of the
underlying implementation platform. For example, see Ltac in Coq [3], or the
language of macetes in IMPS [9]. The latter is also notable due to its integration
with the concept of “little theories”, by means of transportable macetes.

Assimilation means that powerful computational concepts (such as algebraic
datatypes, recursive functions) are integrated into the very logical environment
itself. Calculations are then native reductions of the underlying calculus, as in
the type-theory of Coq [3], which augments plain syntactic αβ-reduction by δι-
reduction (expansion of simple and inductive definitions). Thus calculations may
be performed within the main calculus, while proof terms are reduced to mere
reflexivity according to the “Poincaré principle”. Further advanced implemen-
tation techniques for functional programming language are assimilated into the
Coq inference kernel, in order to achieve reasonable run-time performance.

This unified approach of calculations and deductions (also called “computa-
tional reflection”) looks very attractive at first sight: various proof tools have
been implemented like this [11, 5, 6]. On the other hand, there is some extra te-
dium involved, because all manipulations need to be formalized within the logic.
First this requires facilities to quote (or “reify”) logical statements in order to
access their syntactic structure. Then fully formal correctness proofs need to be
provided, to get manipulated statements interpreted back into the logic.

An important point of the “LCF approach” is to allow arbitrary manipula-
tions without requiring quoting or formally proven programs — correctness is
achieved by checking the logically relevant bits at run-time. There are numerous
procedures implemented in HOL Light [13]; see also [14] for particular appli-
cations involving Computer Algebra Systems as search oracles for HOL proofs.
Recent interesting work following this approach include [8, 7].

Basic notation. Keywords like theorem, locale, interpretation etc. refer to
Isabelle theory elements. Types and terms are embedded here as smaller units,
and notation approximates mathematical conventions despite a bias towards λ-
calculus. Types τ consist of type variables α, type constants like nat or int, or
function spaces τ1 ⇒ τ2. Terms t consist of variables x, constants c, abstractions
λx . t, or applications t1 t2. Propositions are terms of type prop, with the outer-
most logical rule structure represented via implication A =⇒ B, or quantification∧

x . B, where outermost quantifiers are implicit.
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Mathematical functions A → B are approximated by computable functions
implemented in SML. We use “curried” notation uniformly for iterated appli-
cations: f x y for f : A → B → C and x : A and y : B. This is particularly
important for partial application, such as f x : B → C, which requires another
argument y : B to continue evaluation. Despite some similarities in notation, a
plain mathematical function (x �→ f x ) : A → B should not be confused with a
symbolic term (λx . t x ) : α ⇒ β within the logical framework!

Overview. In §2 we present a simple example of calculating with (semi)ring
numerals. In §3 we introduce the general principles of contexts and context
declarations in Isabelle. In §4 we review some aspects of Isabelle’s Simplifier
that use the context infrastructure to implement facilities shown in the example.
In §5 we report on a larger application, a proof method for ring equalities via
Gröbner Bases.

2 Example: Calculations on Generic Numerals

Our main application (cf. §5) operates on general semiring and ring structures in
non-trivial ways. In order to illustrate the integration of proof methods with ab-
stract theory mechanisms of Isabelle, we merely consider the trivial sub-problem
of representing constants (abstract numerals) adequately, such that basic calcu-
lations (addition, subtraction etc.) can be performed efficiently.

We shall be using Isabelle locales [15, 1, 2] which provide a general concept
for abstracting over operations with certain properties. Locales are similar to the
“little theories” of IMPS [9], but based on pure predicate definitions together
with some infrastructure to manage Isabelle/Isar proof contexts [20].

Existing calculational tools in Isabelle [18] use the more restricted mechanism
of axiomatic type classes [19], where the only parameter is the underlying type,
but the signature is fixed. According to [12], type-classes may be understood as
particular locale interpretations, where the variable parameters are replaced by
polymorphic constants — fixing everything except the underlying type. Thus
our general locale-based proof methods will be able to cover type-classes as well.

2.1 Semirings

A semiring provides operations ⊕, �, 0, 1 over type α, with the usual laws for asso-
ciativity, commutativity, and distributivity etc.

locale semiring =
fixes add :: α ⇒ α ⇒ α (infixl ⊕ 65)
and mul :: α ⇒ α ⇒ α (infixl � 70)
and zero :: α (0) and one :: α (1)

assumes add-a: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)
and add-c: x ⊕ y = y ⊕ x
and add-0: 0 ⊕ x = x and . . .

This locale definition provides a context with hypothetical parameters and as-
sumptions. Results within this abstract theory are specified using the notation
“(in semiring)”.
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We single out canonical semiring expressions as “constants”, corresponding to
non-negative natural numbers. To achieve a reasonably efficient representation,
we postulate another operation bit for shifting a least-significant 0 or 1:

locale semiring-bin = semiring +
fixes bit :: α ⇒ bool ⇒ α
assumes bit-def : bit x b = x ⊕ x ⊕ (if b then 1 else 0)

We can now represent numerals compactly using binary representation according
to the recursive definition numeral = 0 | 1 | bit numeral False | bit numeral True
(excluding leading zeros). E.g. 6 is represented as binary bit (bit 1 True) False
instead of unary 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1. The syntax machinery of Isabelle can
be modified to support human-readable (decimal) notation; we shall use #digits
for this purpose. Then the term #6 will stand for the previous binary expression.

Symbolic calculation on numerals means to manipulate canonical expressions
such that proven equalities emerge in the end. For example, addition is easily
implemented as a strongly-normalizing term rewrite system:

theorem (in semiring-bin) binary-add :
x ⊕ 0 = x
0 ⊕ x = x
1 ⊕ 1 = bit 1 False
bit x False ⊕ 1 = bit x True
bit x True ⊕ 1 = bit (add x 1) False
1 ⊕ bit x False = bit x True
1 ⊕ bit x True = bit (add x 1) False
bit x False ⊕ bit y False = bit (x ⊕ y) False
bit x False ⊕ bit y True = bit (x ⊕ y) True
bit x True ⊕ bit y False = bit (x ⊕ y) True
bit x True ⊕ bit y True = bit (x ⊕ y ⊕ 1) False

Isabelle’s Simplifier depends on rewrite rules declared in the context as [simp].
The proof method simp derives equalities according to a bottom-up strategy,
effectively simulating strict functional evaluation with proven results t = t ′.

declare (in semiring-bin) binary-add [simp]

We can now prove equations involving addition of abstract numerals, e.g.:

theorem (in semiring-bin) #48734 ⊕ #3762039758274 = #3762039807008
by simp

The same works for various interpretations of the abstract theory context,
e.g. for type nat with the usual operations +, ∗, 0, 1, and bit-nat being defined
separately:

definition bit-nat n b = n + n + (if b then (1::nat) else (0::nat))
interpretation semiring-bin [(op +) (op ∗) 0 1 bit-nat ] 〈proof 〉

Now the background context contains corresponding instances of the semi-ring
locale content (e.g. for type nat), including binary-add with the [simp] declara-
tion. This allows to calculate on interpreted nat numerals as follows:
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theorem #48734 + #3762039758274 = #3762039807008
by simp

Multiplication on numerals is handled by the very same technique.

2.2 Ring Numerals

The subsequent locale ring-bin extends semirings with subtraction and negation.
Our particular axioms are not an abstract algebraic characterization, but express
the requirements of the proof method introduced later.

locale ring-bin = semiring-bin +
fixes sub :: α ⇒ α ⇒ α (infixl � 65)
and neg :: α ⇒ α (� - [81] 80)

assumes neg-mul : (� 1) � x = � x
and sub-add [simp]: x � y = x ⊕ (� y)
and add-neg : z ⊕ y = x =⇒ x ⊕ (� y) = z

Canonical expressions for signed numerals are defined as numeral | � numeral
(excluding negated zeros). For symbolic computation, subtraction is reduced to
negation and addition immediately, and negations are normalized as follows:

theorem (in ring-bin) neg-norm [simp]:
� 0 = 0
� (� x) = x
(� x) ⊕ (� y) = � (x ⊕ y)

This reduces signed addition to x ⊕ (� y) or (� y) ⊕ x, where x and y are
unsigned semiring numerals. The result is either some z or � z, depending on
the sign of the difference of x and y. These cases are covered by diff-rules :

theorem (in ring-bin) diff-rules:
z ⊕ x = y =⇒ x ⊕ (� y) = � z
z ⊕ x = y =⇒ (� y) ⊕ x = � z
z ⊕ y = x =⇒ x ⊕ (� y) = z
z ⊕ y = x =⇒ (� y) ⊕ x = z

Here z needs to be produced separately in order to apply these rules effectively.
Checking the preconditions afterwards works by term rewriting, but comput-
ing z the same way would be slightly awkward (requiring auxiliary construc-
tions within the logical context, like twos-complement binary numerals). Instead
we shall now use the existing programming environment of SML to work out
signed addition (including negation and subtraction). Converting symbolic ex-
pressions back and forth to SML integers is straight-forward, by providing func-
tions dest-binary and mk-binary. The remaining task is to test the result and
instruct the logical engine to apply an appropriate diff-rules case.

The simproc-setup declaration below augments the Simplifier context by a
function that proves rewrite rules on the fly (depending on the current redex):
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simproc-setup (in ring-bin) binary-sub (x ⊕ (� y) | (� y) ⊕ x) =
(fn ϕ 	→

let
val [rule1, rule2, rule3, rule4] = ϕ diff-rules
val int-of = dest-binary ϕ
val of-int = mk-binary ϕ
val add = ϕ (op ⊕)
val add-conv = Simplifier .rewrite (ϕ binary-add)

in
fn (@{term add t u}) 	→

let
val x = int-of t
val y = int-of u
val z = x + y
val v = of-int (abs z)
val (w , rule) =

if z < 0 then if y < 0 then (t , rule1) else (u, rule2)
else if y < 0 then (operand-of u, rule3) else (operand-of t , rule4)

in rule OF [add-conv (@{term add v w)] end
end)

Everything depends on a morphism ϕ that provides the view of abstract
entities from ring-bin in the particular application context. In the first stage, the
procedure applies ϕ to all required logical entities of ring-bin, notably terms and
theorems. In the second stage it operates on the particular problem, accepting
a term add t u and producing a proven result involving another term add v w.

The main calculation happens in z = x + y, which re-uses the existing im-
plementation of addition on unbounded integers in SML. In more complex ap-
plications we could just as well refer to a suitable library or communicate with
an external CA system — the full SML programming environment is accessible
here. The final deduction is performed in “rule OF [add-conv . . .]”, where the
conversion function turns the term add v w into a proven theorem add v w =
result (using the Simplifier internally analogous to §2.1); this equality is resolved
with the precondition of our selected rule.

With the above simproc installed we may now establish equalities for abstract
and concrete numerals:

theorem (in ring-bin) #48734 � #3762039758274 = � #3762039709540
by simp

definition bit-int i b = i + i + (if b then (1::int) else (0::int))
interpretation ring-bin [(op +) (op ∗) 0 1 bit-int (op −) uminus] 〈proof 〉

theorem #48734 − #3762039758274 = − #3762039709540
by simp

The same technique also works for more complex calculations, like div/mod.



Context Aware Calculation and Deduction 33

3 Contexts and Declarations

3.1 Generic Contexts

Isabelle supports two notions of context: theory for large-scale library organiza-
tion, and proof context as medium-scale reasoning infrastructure for structured
proofs [20] and structured specifications [15, 1, 2, 12]. Here we present a unified
view of generic contexts that covers the common characteristics of both kinds.

In primitive inferences Γ � A means that A is derivable within a context
Γ , which typically contains fixed variables and assumptions. We generalize this
idea towards a container for arbitrary logical and extra-logical data, including
background theory declarations (types, constants, axioms), local parameters and
assumptions, definitions and theorems, syntax and type-inference information,
hints for automated proof tools (e.g. the Simplifier, arithmetic procedures) etc.

There are two main logical operations on generic contexts:

1. Context construction starts with an empty context Γ 0 and proceeds by
adding further context elements consecutively. In particular, Γ + fix x de-
clares a local variable, and Γ + assume A states a local assumption.

2. Context export destructs the logical difference of two contexts, by imposing
it on local results. The effect of export Γ 1 Γ 2 is to discharge portions of the
context on terms and theorems as follows:
export (Γ + fix x ) Γ (t x ) = (λx . t x )
export (Γ + fix x ) Γ (� B x ) = (�

∧
x . B x )

export (Γ + assume A) Γ (A � B) = (� A =⇒ B)

Discharging assumptions on syntactic terms has no effect.

3.2 Context Data

Isabelle belongs to the tradition of “LCF-style” provers, which is centered around
formally checked entities being implemented as abstract datatypes. All values of
such types being produced at run-time are “correct by construction” — relative
to the correctness of a few core modules. For example, certified terms may be
composed by syntax primitives to produce again certified terms; likewise theo-
rems are composed by primitive rules to produce new theorems.

We extend this principle towards an abstract type of well-formed proof con-
texts, with additional support for type-safe additions of context data at compile
time. Internally, context data consists of an inhomogeneous record of individ-
ual data slots (based on dynamically typed disjoint sums). The external pro-
gramming interface recovers strong static typing by means of an SML functor,
involving dependently-typed modules, functor Data(ARGS ): RESULT, where:

ARGS = sig type T val init : T end
RESULT = sig val put : T → context → context val get : context → T end

For example, the inference kernel requires a table of axioms, which is declared
by structure Axioms = Data(type T = (name × term) list val init = []). The
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resulting operations Axioms .put : (name × term) list → context → context and
Axioms .get : context → (name × term) list are kept private to the kernel im-
plementation, exposing only interfaces for adding axioms strictly monotonically,
and for turning named axioms into theorems. Thus abstract datatype integrity
can be maintained, according to the “LCF system approach”.

Slightly less critical applications of the same mechanism involve automated
proof tools that depend on “hints” in the context, such as the Simplifier (cf. §4).

3.3 Morphisms

In general a morphism is just abstract non-sense to organize certain logical oper-
ations. The idea is that a morphism determines how results may be transferred
into another context, providing a different view of previous results.

Formally, a morphism ϕ is a tuple (ϕtype, ϕterm, ϕthm) of mappings on types,
terms, and theorems, respectively. ϕ0 refers to the identity morphism. We write
uniformly ϕ τ for some type τ , and ϕ t for some term t, and ϕ th for some
theorem th, meaning that the appropriate component is applied. Usually mor-
phisms respect the overall syntactic structure of arguments, by mapping types
within terms uniformly etc. Then the full morphism ϕ is already determined by
the ϕthm part, since types and terms are sub-structurally included in thm.

A morphism is called well-formed, if it preserves logical well-formedness of its
arguments. This desirable property may be achieved in practice by composing
morphisms from basic operations of the inference kernel. For example, a mor-
phism consisting of primitive inference rules (e.g. for instantiation of variables)
will map theorems again to theorems by construction.

The following two kinds of morphism, which resemble abstraction and appli-
cation in λ-calculus or type-theory, are particularly important in practice.

1. Export morphism: the export operation between two contexts (cf. §3.1) de-
termines a well-formed morphism ϕ = export Γ 1 Γ 2. By this view, local
results (with fixed variables and assumptions) appear in generalized form
(with arbitrary variables and discharged premises).

2. Interpretation morphism: given concrete terms for the fixed variables, and
theorems for the assumptions of a context, the substitution operation de-
termines a well-formed morphism ϕ = interpret [t/x ] [th/A]. By this view,
results of an abstract theory are turned into concrete instances.

3.4 Generic Declarations

Ultimately we would like to view arbitrary context data after morphism applica-
tion, but doing this directly turns out as unsatisfactory — essentially violating
abstract datatype integrity. This could be amended by incorporating morphisms
into the generic data interface (cf. §3.2), but then implementations would be-
come more complicated due to additional invariants (e.g. consider efficient term
index structures in the presence of arbitrary morphisms).
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Instead, we handle morphisms at the level of data declarations. Recalling that
arbitrary datatypes can be incorporated into the generic context, any operation
on data is subsumed by context → context. This motivates the our definition:

declaration = morphism → context → context

This means a declaration participates in applying the morphism: being passed
some ϕ as additional argument it is supposed to apply it to any logical param-
eters (types, terms, theorems) involved in its operation. Note that immediate
declaration in the current context works by passing the identity morphism ϕ0.

A fact declaration is represented as a theorem-attribute pair. This is an im-
portant special case; the general declaration is recovered by the apply operation:

fact-declaration = thm × attribute
attribute = thm → context → context

apply (th, att) = (ϕ �→ att (ϕ th))

Observe that th is transformed separately before invoking the attribute. Here the
internal operation does not have to consider morphisms at all.

The Isabelle syntax for (th, att) is “th [att ]”, which may appear wherever facts
occur, as in “theorem th [att ]: A” or “declare th [att ]”. General declarations
are written as “declaration d”, for d : morphism → context → context.

3.5 Locales

Locales [15] provide a high-level mechanism to organize proof context elements
and declarations (cf. §3.4). Locale expressions [1] compose existing locales by
means of merge and rename operations. Locale interpretation [2] transfers re-
sults stemming from a locale into another context. Type-classes [19] express
properties of polymorphic entities within the type-system; there is a canonical
interpretation of classes as specific locales [12]. These building-blocks provide
a medium-scale module concept on top of the existing Isabelle logic — locale
operations are reduced to basic inferences (usually expressed via morphisms).

A locale specification consists of the following two distinctive parts.

1. Assumptions refer to fixed types, terms, and hypotheses. The latter two are
specified explicitly by the notation “fixes x” and “assumes A x”; types are
maintained implicitly according to occurrences in the given formulae.
The assumption part determines the logical meaning of a locale, which is
expressed as predicate definition together with a context construction: the
definition “locale c = fixes x assumes A x” produces a predicate constant
c = (λx . A x ), and a context construction Γ + fix x assume A x.

2. Conclusions are essentially theorems that depend on the locale context and
are adjoined to the locale later on, without changing the logical meaning.
The notation “(in c)” may be added to various theory elements (notably
theorem) to indicate that the result is established within the context of c,
and stored there for later use. Fact declarations may be included, too.
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The conclusion part is what really matters in practical use, including dec-
larations of arbitrary extra-logical data. The locale infrastructure maintains a
canonical order of declarations d1, . . ., dn. Whenever the locale context is re-
constructed later, relative to a morphism ϕ, the context will be augmented by
the collective declaration of dn ϕ (· · · (d1 ϕ Γ )). For our purpose, we have gen-
eralized the existing fact declaration mechanism towards arbitrary declaration
functions (cf. §3.4). Thus we may attach arbitrary SML values to a locale, which
will be transformed together with the logical content by morphism application.

4 Context-Dependent Simplification

Isabelle’s generic Simplifier [17] is already a non-trivial example of integrating
automated proof tools into our architecture of context data and declarations
(cf. §3). The generic proof method simp depends on a simpset container being
maintained as context data. A simpset roughly consists of a set of simplification
rules and simplification procedures (of type simproc), which are maintained by:

add-simp: thm → simpset → simpset
add-simproc: simproc → simpset → simpset

Declaration of plain simplification rules (cf. the example in §2.1) follows the
general scheme of fact-declaration of §3.4. Here add-simp is wrapped into an
attribute called simp. Morphism application is trivial, since rules are theorems.

Declaration of simplification procedures is more involved, cf. the example in
§2.2. A simproc essentially consists of a function morphism → term → thm
that turns a redex t into a theorem t = t ′. We introduce a derived declaration
“simproc-setup name (patterns) = f ” for patterns : term∗ and f : morphism
→ simproc, which roughly abbreviates “declaration (ϕ �→ add-simproc (ϕ f ))”.
What does it mean to to apply a morphism to a function? We define:

ϕ f = (ψ �→ f (ψ ◦ ϕ))

Our main observation is that a function transforms itself by a given morphism.
The body will apply the morphism to all required logical entities, or pass it on
to other functions. To apply ϕ to f, we compose ϕ with any morphism ψ being
passed in the future. Actual evaluation in the present context is commenced by
invoking f ϕ0 (the identity morphism). Note that this scheme is reminiscent of
programming language semantics presented in “continuation-passing style”.

Tool-compliant morphisms. A well-formed morphism (cf. §3.3) guarantees sta-
bility of logical entities after transformation. Unfortunately, this is not sufficient
to achieve stability of arbitrary functions. For example, even with plain simpli-
fication rules alone, the Simplifier is not necessarily stable after arbitrary inter-
pretation of its context: although an interpreted rewrite system still represents
equational consequences of the original theory, it may cause the rewrite strategy
to produce unwanted results or fail to terminate.
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A morphism ϕ is called f -compliant iff ϕ f preserves the intended operational
behavior of f ϕ0. E.g. for binary-sub defined in §2.2, tool-compliant morphisms
include those that replace bit, add, neg by rigid first-order terms, but not arbi-
trary λ-abstractions that destroy the shape of the term patterns involved.

Morphisms stemming from locale import expressions [1] (type instantiations
and renaming) are usually tool-compliant. Substitution of parameters by con-
stants works equally well. Assuming that the tool is able to perform unification
of simple types at runtime, types may be even generalized here, e.g. replacing
the fixed α of locale ring-bin by an arbitrary β::c constrained by a suitable
type-class c that ensures the required algebraic properties. This means that the
canonical interpretation of locales as type-classes [12], where fixed parameters
are replaced by polymorphic constants yields morphisms that comply with such
tools.

5 Application: Gröbner Bases

We use the techniques of §3 to integrate a proof-tool for (semi)ring equalities.
The procedure follows the traditional refutation scheme: negate the input then
transform to DNF and disprove each disjunct. Hence we consider formulae P
of the form

∧n
i=1 pi = 0 ∧ f = 0, where the pi’s and f are polynomials within

semiring. Recall that we can turn several inequalities into only one. We use an
oracle to find a Nullstellensatz refutation consisting of polynomials h1, . . ., hn

and a number k s.t.
∑n

i=1 hi ·pi = fk. It is clear that by proving this last equality,
¬ P follows. The oracle computes a Gröbner basis [4] for the ideal generated by
the pi’s and reduces f in that basis. The whole process keeps track on where
the S-polynomials originate from in order to express the final result in terms of
the pi’s. This implementation has been ported from HOL Light [13], see also
[16, §3.4.2]. Note that this procedure also solves many problems in semiring,
by dealing with p = q as if it were p − q = 0 and separating the “negative”
and “positive” parts of the Nullstellensatz certificate. This yields a correct yet
incomplete procedure, depending only on two axioms stated in semiringb:

locale semiringb = semiring +
assumes add-cancel : (x ⊕ y = x ⊕ z) ↔ y = z
and idom: (w � y ⊕ x � z = w � z ⊕ x � y) ↔ w = x ∨ y = z

We emphasize that our procedure proves results by inference: the oracle only
finds a certificate, used to derive the conflicting equation. The final equation
emerges by normalizing both sides, using genuine inferences. This approach also
allows to integrate other tools solving the detachability problem [16, §3.4.2] or
provide the construction information of the S-polynomials (as e.g. in AXIOM).

Context data. The method sketched above is essentially parameterized by the
operations and axioms of (semi)ring (in order to prove the normal form of poly-
nomials and recognize their structure) and by four non-logical functions: is-const
recognizes canonical ring expressions as “constants”, dest-const produces SML
rational numbers from ring constants, mk-const produces ring constants from
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SML rational numbers, and ring-conv : morphism → term → thm produces
proven normalization results of numeral expressions.

Following §3.2, the method reserves a data slot in the context to manage all
its instances. We emphasize that instances no longer depend on a morphism,
since these are applied at declaration-time, where the corresponding instance of
our procedure is computed. At run-time, when we have to prove P, we extract
a polynomial q occurring in P and try to find a corresponding interpretation
installed in our context-data. Afterwards it proceeds as explained above.

Using the proof method. The end-user sees an Isabelle proof method algebra,
that works for any tool-compliant interpretation of semiringb. The user only
needs to interpret the semiringb locale to activate the method in his context.
The default configuration includes interpretations of semiringb to “prominent”
types in Isabelle/HOL: natural numbers and the type-class idom, which covers
e.g. integers and real numbers. Here is a simple example:

theorem
fixes x :: int
shows x ∗ (x2 − x − 5) − 3 = 0 ↔ (x = 3 ∨ x = −1)
by algebra

6 Conclusion

We have presented a system architecture that emphasizes the explicit context-
dependency of both logical and non-logical entities, with specific infrastructure
to manage generic data, declarations, morphisms etc. An interesting observa-
tion about context-aware proof tools is that there are three phases: compile-
time (when loading the sources), declaration-time (when applying morphisms to
transfer abstract entities to particular interpretations), and run time (when the
tool is invoked on concrete problems).

Traditional “LCF system programming” directly uses features of SML to ab-
stract over theory dependencies. Our approach goes beyond this by providing
specific means to organize the requirements of a tool. Thus the implementor is
enabled to build generic methods that are transferred automatically into the
application context later on. The end-user merely needs to perform a logical in-
terpretation of the corresponding tool context, without being exposed to SML.

This integration of abstract theory mechanisms and proof methods is achieved
without changing the logical foundations of Isabelle. All additional mechanisms
are reduced to existing logical principles. Neither do we require a separate formal
model of computation, we merely access the underlying implementation platform
(SML) directly.

Apart from these theoretical considerations there remains the important prac-
tical issue to implement tools that are actually stable under application of typi-
cal theory morphisms. While the LCF approach guarantees logical correctness,
proof methods may still fail due to unexpected interpretation of abstract theory
contexts. This can be addressed by focusing on restricted classes of morphisms,
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such as those stemming from interpretation of Isabelle locales as axiomatic type-
classes or concrete base types.
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Thierry Coquand1 and Arnaud Spiwack2
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Abstract. This paper reports on ongoing work on the project of repre-
senting the Kenzo system [15] in type theory [11].

Introduction

This paper reports on ongoing work on the project of representing the system
Kenzo [15] in type theory. Kenzo is a symbolic computation system in algebraic
topology, based on a rich mathematical theory described in [15], and which uses
in an essential way ideas from functional programming. Our ultimate goal is
to represent the mathematical results of [15] as constructive mathematical re-
sults developed in type theory. Using type theory as a functional programming
language, this representation should then give a fully specified and checked func-
tional version of Kenzo. Besides the Kenzo system, we can hope to develop in this
way a library of reasonably efficient algorithms in homological algebra, similar
to [5] but specified and written in type theory.

One of the main mathematical results on which the system Kenzo relies (the
Basic Pertubation Lemma) has been already checked in the system Isabelle
[1,15]. Our paper complements this work by exploring the formalisation of Kenzo
at the level of preabelian category. For this, we show in detail how to represent
category theory, and in particular preabelian categories, in type theory. We use
then this formalisation on the test example suggested in [1], where it is explained
why it is quite subtle to represent it formally. We believe that to express reason-
ing at the level of category theory, in a characteristic “pointfree” way, is perfect
for formalisation. Indeed it works well on this test example, and the formal
reasoning in type theory follows closely the informal argument. We can then
instantiate this abstract argument on the example of the category of abelian
groups to get back the statement in [1].

This paper is organised as follows. First we describe in detail the general
setting in which we represent the mathematics of Kenzo: dependent type theory
with universes, essentially the system [11], with a special universe of propositions.
The system Coq [6] is a possible implementation of this system. We explain
then how usual mathematical notions (sets, groups, . . .) and then the notion of
category theory are represented in this setting. The main example is the notion
of preabelian category. We show how a test example [1] can be represented as a
general property of preabelian categories. This has been done formally in Coq.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 40–54, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We end by listing the remaining steps for having a representation of Kenzo.
An appendix presents the formal statements, that are reasonably close to the
informal statements.

The results of this paper are quite preliminary w.r.t. to the general goal of
actually running Kenzo program in type theory. They show however that this
project should be feasible, and provide already interesting observations on the
formal representation of mathematics in type theory.

1 Type Theory

We shall use type theory [11] as a model for the mathematics used in homological
algebra. It is an alternative to the system ZF, with closer connection with func-
tional programming (and should be thus a priori well adapted for representing
Kenzo). All mathematical notions and proofs are represented as λ-terms. These
terms can then be directly computed [10] and there exist now actual efficient
implementations of such computations [8].

The terms are untyped lambda terms with constants. We consider terms up to
α-conversion. We have a constructor Π of arity 2 and we write Πx:A.B instead
of Π A (λx.B), and A → B instead of Π A (λx.B) if x is not free in B. We
write also Πx1 . . . xn : A.B for Πx1 : A. . . . .Πxn : A.B. We write B[x = M ],
or even B[M ] if x is clear, the substitution of the term M for the variable x in
B. We have special constants U1, U2, . . . for universes. A context is a sequence
x1 : A1, . . . , xn : An.

The minimal type theory we use has three forms of judgements

Γ � A Γ � M : A Γ �

The last judgement Γ � expresses that Γ is a well-typed context. We may
write J [x : A] for x : A � J .

The typing rules are as follows.

�
Γ � A

Γ, x : A �
Γ �

Γ � Ui

Γ � A : Ui

Γ � A

Γ, x : A � B

Γ � Πx:A.B

(x : A) ∈ Γ Γ �
Γ � x : A

Γ, x : A � M : B

Γ � λx.M : Πx:A.B

Γ � N : Πx:A.B Γ � M : A

Γ � N M : B[M ]
Γ � M : A Γ � B A =β B

Γ � M : B

We have also
Γ �

Γ � Ui : Ui+1

Γ � A : Ui

Γ � A : Ui+1

We express finally that each universe Ui is closed under the product operation.

Γ � A : Ui Γ, x : A � B : Ui

Γ � Πx:A.B : Ui
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These rules have an intuitive interpretation in set theory, where Ui are
Grothendieck universes [2]. The dependent product Πx : A.B if B(x) is a family
of sets over a set A is the set of all families (bx)x∈A such that bx ∈ B(x) for all
x ∈ A.

It is convenient to introduce sigma types, with the following rules, and adding
the conversion rules (M1, M2).1 =β M1, (M1, M2).2 =β M2

Γ, x : A � B

Γ � Σx : A.B

Γ � M : A Γ � N : B[M ]
Γ � (M, N) : Σx : A.B

Γ � P : Σx : A.B

Γ � P.1 : A

Γ � P : Σx : A.B

Γ � P.2 : B[P.1]

Γ � A : Ui Γ, x : A � B : Ui

Γ � Σx : A.B : Ui

In set theory, Σx : A.B is the set of pairs (x, bx) with x ∈ A and bx ∈ B(x).
We shall write (x1, . . . , xn) for (. . . (x1, x2), . . . , xn)1.

2 A Type of Propositions

It is convenient also to introduce a special universe U0, which in set theory would
be the set of truth values, with the special rules

Γ �
Γ � U0 : U1

Γ � A : U0

Γ � A : U1

Γ � A Γ, x : A � B : U0

Γ � ∀x : A.B : U0

Γ, x : A � B : U0 Γ, x : A � M : B

Γ � λx.M : ∀x : A.B

Γ � N : ∀x : A.B Γ � M : A

Γ � N M : B[M ]

We write A ⇒ B for ∀x : A.B if x is not free in B, and A1 ⇒ . . . ⇒ An

denotes (. . . (A1 ⇒ A2) . . . ⇒ An.
We can quantify over any type: ∀x : A.B : U0 for any type A, if B : U0 [x : A].

In particular, we have ∀x : U0.B : U0 if B : U0 [x : U0]. This impredicativity
is convenient, but not necessary for representing the reasonings in [15]. We can
represent logical connectives as operations of type U0 → U0 → U0. For instance
A ∧B is defined as

∀P : U0.(A ⇒ B ⇒ P ) ⇒ P

We define also A ⇔ B as (A ⇒ B) ∧ (B ⇒ A) and ⊥: U0 as ∀A : U0.A and
� : U0 as ∀A : U0.A ⇒ A, which has an inhabitant λAλx.x.

1 The addition of sigma types is convenient but not strictly necessary. One can work
with vectors of terms and telescopes instead [4]. A telescope is like a context T =
x1 : A1, . . . , xn−1 : An−1, An and a vector P1, . . . , Pn fits this telescope iff P1 :
A1, . . . , Pn : An[P1, . . . , Pn−1].
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These rules have also a direct interpretation in ZF set theory. The type U0 is
interpreted as the set {0, 1}, 0 being the empty set and 1 being the set {0}, and
∀x : A.B is 1 iff B(x) = 1 for all x in A and is 0 otherwise. See [13] for a careful
presentation of this model.

Notice that if A : U1 and B : U0 [x : A] we have also B : U1 [x : A] and we
can also form Πx : A.B : U1. There are two maps

(Πx : A.B) → ∀x : A.B (∀x : A.B) → Πx : A.B

but the two types ∀x : A.B and Πx : A.B are not convertible. (They are not
identical in general in the set theoretical model. Indeed, in this model an element
of Πx : A.B will be a family, which in set theory has to be the set of pairs (a, 0)
with a in A, while an element of ∀x : A.B can only be the empty set 0. See [13]
for a general discussion of this point.)

The existence of a set theoretical model entails the consistency of our type
theory: the type ⊥ is not inhabited (i.e. there is no proof of false). A sharper
result is the strong normalisation theorem [12]. It follows from this that if M, A
are in normal form then the judgement � M : A is decidable. It follows from
this that one can actually checked the correctness of proofs. Furthermore, one
can use type theory as a terminating functional programming language.

By analogy with ∀x : A.B it would be natural to add an operation ∃x : A.B
with the rules

Γ � A Γ, x : A � B : U0

Γ � ∃x : A.B : U0

Γ � M : A Γ � N : B[M ]
Γ � (M, N) : ∃x : A.B

Γ � P : ∃x : A.B

Γ � P.1 : A

Γ � P : ∃x : A.B

Γ � P.2 : B[P.1]

A fundamental result, which plays a role in this paper, is that the addition
of these rules is contradictory: it is possible to build a proof of ⊥ (which is then
automatically not normalisable) in this extended system [7].

It would be difficult to try and give an intuitive reason why the system with
∃ is inconsistent. Unfortunately the proof of inconsistency is not so intuitive.
In this particular case, it is possible to encore a type theory with a type of all
types, which is a well known case of inconsistent theory [7].

Since these rules are contradictory, we cannot use them to represent mathe-
matics. It is possible however to define ∃x : A.B : U0 as

∀P : U0.(∀x : A.B ⇒ P ) ⇒ P

Since B : U1 [x : A] we can also form Σx : A.B : U1. We then have a map

(Σx : A.B) → ∃x : A.B

but in general there is no map in the other direction.
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3 Representation of Bishop Set Theory in Type Theory

3.1 Bishop Sets

Bishop [3] specified the notion of set by stating that a set has to be given by a
description of how to build element of this set and by giving a binary relation
of equality, which has to be an equivalence relation. A function from a set A
to a set B is then given by an operation, which is compatible with the equality
(i.e. two elements which are equal in A are mapped to two elements which are
equal in B), and is described as “a finite routine f which assigns an element
f(a) of B to each given element a of A”. This notion of routine is left informal
but must “afford an explicit, finite, mechanical reduction of the procedure for
constructing f(a) to the procedure for constructing a.” It is direct and natural
to represent formally all these notions in our type theory.

A Bishop set is defined to be a type A : U1 together with an equivalence rela-
tion over A that is an element R : A → A → U0 with a proof of equiv A R, where

equiv : ΠA : U1.(A → A → U0) → U0

equiv A R = refl A R ∧ sym A R ∧ trans A R

refl A R = ∀x : A.R x x, sym A R = ∀x y : A. R x y ⇒ R y x

trans A R = ∀x y z : A. R x y ∧R y z ⇒ R x z

It is possible to represent the collection of all Bishop sets as the type

ΣA : U1.ΣR : A → A → U0.equiv A R

which is itself an element of type U2.
If X = (A, R, p) is a Bishop set, we write |X | = X.1 = A its corresponding

type and =X for its corresponding equivalence relation R = X.2.1. If there is no
confusion, we shall say simply “set” for “Bishop set”. If Y = (B, S, q) is another
set, then one can form the set Y X of functions from X to Y by taking

|Y X | = Σf : |X |→ |Y |.∀x1 x2 : |X |. x1 =X x2 ⇒ f x1 =Y f x2

and (f1, p1) =Y X (f2, p2) is the proposition Πx : A. f1 x =Y f2 x.
Bishop sets form a category. One can ask how similar is this category to the

category of sets in ZF. We analyse this in the next subsection.

3.2 Truth Values, Properties and Subsets

An important set is the set of truth values Ω such that |Ω| is U0 and =Ω is ⇔.
A property on X is a function from X to Ω (in Bishop’s sense).

If P : A → U0 is a property on a set X = (A, =X , p), which means that
x1 =X x2 implies P x1 ⇔ P x2, it is possible to define the set |Y | = Σx : A.P x
with the equality (x1, p1) =Y (x2, p2) iff x1 =X x2. One can then check that
the map m : y �−→ y.1 is a function from the set Y to the set X which is
one-to-one: y1 =Y y2 iff m y1 =X m y2. Bishop defines a subset of X to be
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such a function i : Z → X which is one-to-one. We have just seen that any
property P on X defines a subset m : Y → X of X , and it is natural to write
m : {x : X | P x} → X for this subset. This corresponds to the comprehension
axiom in systems such as ZF.

Conversely, given a subset Z with |Z| = C, i : C → A it is possible to define
a property P : A → U0 on X by taking P x to be ∃z : C.x =X i z. This property
defines a subset m : Y → X with Y = {x : X | P x}. In ZF set theory the
two subsets Y and Z are equivalent and it is possible to find a (unique) map
f : Y → Z such that i f = m. This is not possible in our representation: given
x : A and a proof that ∃z : C.x =X i z there is no way in general to extract from
this proof an element z : C such that x =X i z holds. In general, we do not have
the implication

(∀x : A.∃!z : C.R x z) → ∃f : A → C.∀x : A.R x (f x) (∗)
In set theory, this implication is achieved by reducing functions to functional re-
lations. However, we want here to be able to use functions as functional programs
for our representation of Kenzo. Since functional programs do not coincide with
functional relations, it is natural that the implication (∗) is not valid.

From these remarks, one can see that the category of Bishop sets we have
defined is not a topos. It thus differs in subtle way from the usual category of
sets. We shall see similarly that in this setting the category of abelian groups is
not an abelian category (but the category of finitely presented abelian groups
is). However, and this is an important point, it is not an obstacle in representing
Kenzo. (This can be expected since the goal of Kenzo is precisely to obtain
functional programs, and not abstractly defined relations.)

3.3 Alternative Representation

Following Curry-Howard, one can represent propositions as types in U1. We don’t
need then to introduce the type U0. Existential propositions are then represented
using sigma types, and in this representation, there is a good correspondance
between subsets and properties and the implication (∗) is valid. The problem
there is that we don’t have a set of truth values any more, since the type of
propositions, U1, is itself of type U2. (So the category of sets do not form a topos
either in this representation.)

We feel that our representation is closer to mathematical practice, and sepa-
rates more clearly what is the computational part, at level U1, and the specifi-
cation part, at level U0

2.

4 Category Theory in Type Theory

We can represent the type of “all” Bishop sets, and this itself is of type U2.
It is possible similarly to represent the collection of all groups, the category of
all sets, the category of all groups, and these are represented by types that are in

2 For the development of Kenzo however, both approaches seem possible.
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U2. (This corresponds to the notion of locally small categories.) One can then
also consider the 2-category of all these categories, and this will be represented
by a type in U3.

In general, a locally small category will be represented by a type of objects
Obj : U2 (for instance the type of Bishop sets). If A, B : Obj we suppose given a
set Hom A B of morphisms. Thus, if A, B : Obj we have Hom A B : U1 and we
have an equality f =Hom A B g which is in U0 for f, g : Hom A B. We introduce
also the identity morphism, the composition operator, and the usual axioms of
associativity and identity.

An important instance is provided by the category of abelian groups3.

4.1 Properties of the Category of Abelian Groups

In classical mathematics, an elegant axiomatisation of the category of abelian
groups is provided by the notion of abelian category. What are the properties of
the category of abelian groups represented in type theory?

It is clear that this category is preabelian: it is preadditive, all hom-sets are
abelian groups and the composition of morphisms is bilinear, it is additive since
we can form finite direct sums and direct products, and finally, every morphism
has both a kernel and a cokernel. This can also be quite directly checked formally.

So the category of abelian groups represented in type theory is preabelian. Is
it abelian? Surprisingly it is not the case that every monomorphism and every
epimorphism is normal (that is, a monomorphism for instance is not necessarily
the kernel of a map). If we have a map u : A → B which is mono, that is
u x = 0 → x = 0 then, in usual set theory, this map is the kernel of the map
s : B → B/Im u (which always makes sense since all the groups are abelian).
This means that if we have a map f : X → B such that s f = 0 then there
exists a unique map g : X → A such that f = u g. That s f = 0 means that for
all x ∈ X there exists a ∈ A (unique) such that f x = u a. But it is not possible
in our representation of Bishop sets to deduce from this the existence of a map
g : X → A such that f x = u (g x). One would need for this the implication

(∀x : A.∃!z : C.R x z) → ∃f : A → C.∀x : A.R x (f x) (∗)

that, as we have seen, does not hold in general.
In any case, we have chosen to axiomatise the algebraic reasoning justifying

Kenzo at the level of preabelian category and not at the level of abelian category.
We believe that actually this reflects better the reasonings done in [15]4.
3 The main difference with the treatment in [9] is the following. We use the structure

of universes to stratify the categories: locally small categories are represented with
a type of object in U2, 2-categories with a type of objects in U3, . . ..

4 Let us consider as an example the long exact sequence of a short exact sequence
(section 2.6 of [15]). This is something that only can be done in an abelian category.
However, the Kenzo version of this notion requires a further hypothesis. The exact-
ness property of the short exact sequence must be effective (definition 80 of [15]).
With this extra hypothesis, the reasoning can then be represented at the level of
preabelian category.
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4.2 Preabelian Category

We represent the notion of general preabelian category in type theory in the
following way. (All these axioms are instantiated by the category of abelian
groups.)

First we have a type of objects Obj : U2. We have to use the type U2 since it is
the type of the collection of all abelian groups, represented as a sigma type. For
any two objects A, B : Obj we have an abelian group of morpshims Hom A B.
Thus Hom A B : U1 and we have an equality on Hom A B and a group operation
f +g : Hom A B for f, g : Hom A B with a zero element 0 : Hom A B. We have
a composition operation gf : Hom A C for g : Hom B C and f : Hom A B.
We require the equations (f + g)h = fh + gh and h(f + g) = hf + hg.

There is a zero object 0 : Obj such that f = 0 if f : Hom A 0 or f : Hom 0 A.
We have biproducts, and there is an operation (+) : Obj → Obj → Obj with
morphisms i : Hom A (A+B), j : Hom B (A+B) and p : Hom (A+B) A and
q : Hom (A + B) B with equations pi = 1, qj = 1, pj = 0, qi = 0, ip + jq = 1.

For stating the existence of the kernel, it is convenient to use the telescope
notation [4]

(Ker, inj, pinj) : ΠA B : Obj.Πf : Hom A B. (K : Obj, i : Hom K A, f i = 0)

We require also the universal condition

(univ, puniv) : ΠX : Obj.Πu : Hom X A. f u = 0→ (v : Hom X (Ker f), u=(inj f) v)

and the unicity condition

ΠX: Obj.Πu :Hom XA.Πp : f u=0.Πv :Hom X (Ker f). u=(inj f)v→v=univ f u p

We state the existence of cokernel in a dual way.
We can define in this way a sigma type PreAb : U3 which represents the

collection of all prebalian categories. In particular one can define an element of
type PreAb which is the category of all abelian groups. One could also define
the notion of additive functors between two elements of type PreAb.

4.3 Implicit Arguments

Besides dependent types, we use an important notational facility: implicit argu-
ments. We don’t need to give explicitly the arguments that can be inferred from
the context. For instance the composition operator is of type

Π A B C : Obj. Hom A B → Hom B C → Hom A C

and expects 5 arguments. Since the 3 first arguments can be inferred from the
last 2 arguments, one needs only to give the last 2 arguments and can write
the composition (almost) as usual. In this way, we can write gf instead of
comp A B C f g.
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5 Formalisation of Kenzo

The main idea is to represent the reasonings done in [15] in an arbitrary pre-
abelian category.

5.1 A Test Example

We have tested this approach on the introductory example Lemma 3.3.1 of [1]. As
stated in [1], this example seems to contain the most interesting problems that
have been found in the formalisation of proofs in Kenzo. It requires reasoning
with homomorphisms and endomorphisms as if they were elements of certain
algebraic structures, but also dealing with their functional definition; further-
more the domain conditions on the source or the target of the homomorphisms
also are important. We try here to approach these issues by a formalisation at
the level of category theory. The domain and codomain are explicit, but can be
hidden since they can be inferred from the context.

We work in an arbitrary preabelian category. We suppose that we have h, d :
G → G such that dd = hh = 0 and hdh = h. We define p = dh+hd. We consider
then the inclusion i : K → G where K = Ker p.

Proposition 1. We have

pp = p, ph = hp = h, pd = dp, hi = pi = 0

It follows that pdi = dpi = 0. Hence there exists d1 : K → K such that id1 = di.
We then have d1d1 = 0. Since p(1 − p) = 0 there exists j : G → K such that
ij = 1− p and we have jh = 0, jd = d1j.

Proof. The equality pp = p is proved by computation

(hd+dh)(hd+dh) = hdhd+hddh+dhhd+dhdh = hd+0+0+dh = hd+dh = p

Similarly we check hp = hhd+hdh = 0+h = h, ph = hdh+dhh = h+0 = h and
dp = ddh+dhd = dhd = dhd+hdd = pd. Since i is mono, id1d1 = did1 = ddi = 0
implies that d1d1 = 0.

(The proposition can be stated as the fact that (j, i, h) is a reduction from G, d
to K, d1, as defined below.)

5.2 Use of Category Theory

This “pointfree” style, which requires to represent formally some basic notion of
category theory, can be compared to the formalisation in [1].

The statement of Proposition 1 is not exactly the same as the one of Lemma
3.3.1 of [1] or even the corresponding informal statement in [15]. The formal
representation in [1] allows to consider for instance 1− p both as a map of type
G → G and of type G → K. We do not allow this, and have to distinguish



Towards Constructive Homological Algebra in Type Theory 49

between j : G → K and 1 − p : G → G such that ij = 1 − p. We do not think
however that this is a problem in practice.

The point is that the proof is essentially equational, like in a non commutative
ring, but with an addition and a multiplication operations that are not always
defined (the arity should be compatible). We can furthermore represent it as it
is in type theory (see the appendix). We believe that this formalisation is close
to a precise informal mathematical reasoning.

5.3 Use of Dependent Types

The extension of higher-order logic to a type system with universes is natural to
represent category theory. It seems also necessary if one wants to have a system
in which one can state general properties of an arbitrary category, and then
instantiate it on concrete categories.

Dependent types are also used to facilitate modular reasoning. We can state a
property about an arbitrary preabelian category, and then instantiate it to the
category of abelian groups.

Finally, in this representation, all the terms can directly be seen as functional
programs.

5.4 Refinement of the Test Example

In an arbitrary preabelian category, we define a differential object to be a pair
G, d : G → G with dd = 0. If G, d : G → G is a differential object, we define the
homology H(G, d) of G, d as follows. We consider m : Ker d → G. Since dd = 0
there exists a map d′ : G → Ker d such that md′ = d. This map has a cokernel
s : Ker d → H(G, d).

If G1, d1 : G1 → G1 is another differential object, and f : G → G1 satisfies
fd = d1f , we can build a map H(f) : H(G, d) → H(G1, d1) characterised by the
condition s1d

′
1fm = H(f)s.

A reduction from G, d to G1, d1 is a triple f, g, h such that f : G → G1, g :
G1 → G, h : G → G such that d1f = fd, gd1 = dg, fg = 1, gf = 1 − hd −
dh, hh = fh = hg = 0.

Proposition 2. If f, g, h is a reduction from G, d to G1, d1 then H(f), H(g)
define an isomorphism between H(G, d) and H(G1, d1), that is H(g)H(f) = 1
and H(f)H(g) = 1.

6 Main Remaining Steps

We believe that the notion of preabelian category gives the right axiomatic level
to formally represent what is going on in Kenzo. The next natural step is to
represent the previous notion of equivalence and homology group for chain-
complexes. This is naturally represented in a system with dependent types and
we don’t expect essential problems here. We hope then to be able to represent
formally the Basic Pertubation Lemma as it is formulated in [15] (but for an
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arbitrary preabelian category). We should then, using [15] and the Pertubation
Lemma as an essential tool, develop a library of programs to reduce a chain-
complex to a chain-complex of finitely presented modules, for which one can
compute explicitly the homology group.

The computationally challenging part is to represent the notion of finitely
presented abelian group, and the main algorithms on these groups: effective com-
putation of the kernel, cokernel via Smith reduction. This would involve com-
putations on matrices of integers, and may be done by formalising Chapter V 1
of [14]. Using these algorithms one can then compute a canonical representation
of the homology groups of a chain-complex of finitely presented modules. This
should be a perfect test for the new representation of integers in type theory [16].
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Appendix: Formal Representation in Coq

We have represented formally the notion of preabelian category, and checked
that abelian groups form a preabelian category. We have then formulated and
proved Lemma 3.3.1 of [1] in an arbitrary prebalian category.

Sum-Up of the Syntactic Facilities

Coq provides a lot of syntactic sugar to ease the work of the user. Here is a few
words about these:

1. Record types: the syntax Record name : univ := c {field : type [; . . .]}
allows to declare dependent tuple-types (i.e. n-ary Σ types) with named
field. This is actually no extension of the theory shown in Sections 1 and
2. Internally, this syntax declares a regular Σ-type that goes in universe
univ, and name it name. It also declares a constructor i.e. a term of type
Πf :type . . . .name this term has a fundamental meaning in Coq, but in a
first approximation, one can see it as a tool for tactic-based proofs. Finally
it declares a function field of type name → type for each field declaration
(field : type). It is rather useful to use this notation when building very
large tuples like the definition of a preabelian category.

2. Implicit coercions: in Coq, one can declare a function f as an implicit co-
ercion between two classes of types, a class being basically an identifiable
type construction. If f is a coercion from type t to type u, then f is auto-
matically inserted whenever a term of type t is given where a term of type
u is expected. This allows to consider a category as a type: for a category C
there is a type of its object dom C. If we declare dom as a coercion, then we
can “abuse notations” and write simply C instead of dom C.

3. Implicit coercions in record definition: as an additional notation we can define
fields of a record as implicit coercions during the definition of the record with
the syntax —field :> type instead of the usual —field : type. An intuitive
way to read this syntactic construction would be to consider the new record
type as an extension of type. For instance :
Record preabelian_category : Type := mk_preabcat { preab_cat :> category; ... }

reads “a preabelian category is a category with ...”.

Preabelian Category

Here are additional notes to read this formalisation :

– The composition of f and g is written f!g (instead of gf).
– In Coq, Πx:A.B and ∀x:A.B are both written forall x:A,B. The design

choices have led to use the dot as the end-of-line symbol, so a coma was use
in the forall construction instead.

– The definition of the type category is not included, but it is worth noticing
that both the domain function dom and the hom-set hom function have been
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declared as coercions. Thus we can write C instead of dom C and C X Y in-
stead of hom C X Y. As an example, forall (X Y:C) (f:C X Y), f == f
reads “for all objects X and Y of the category C and for all arrow f in the
hom-set from X to Y, f is equal to itself”

Require Export category.

Record preabelian_category : Type := mk_preabcat {
preab_cat :> category;
zero : preab_cat;
zero_is_zero : zero_object zero;
zerom : forall (X Y:preab_cat), preab_cat X Y;
zerom_is_zero : forall (X Y:preab_cat), zero_morphism zero (zerom X Y);
hom_plus : forall (X Y:preab_cat) (f g:preab_cat X Y), preab_cat X Y;
hom_plus_morphism : forall (X Y:preab_cat) (f1 f2 g1 g2:preab_cat X Y),

f1==f2 -> g1==g2 ->
hom_plus f1 g1 == hom_plus f2 g2;

hom_plus_assoc : forall (X Y:preab_cat) (f g h:preab_cat X Y),
hom_plus f (hom_plus g h ) ==
hom_plus (hom_plus f g) h;

hom_plus_comm : forall (X Y:preab_cat) (f g:preab_cat X Y),
hom_plus f g == hom_plus g f;

hom_plus_zero_l : forall (X Y:preab_cat) (f:preab_cat X Y),
hom_plus zerom f == f;

hom_plus_zero_r : forall (X Y:preab_cat) (f:preab_cat X Y),
hom_plus f zerom == f;

hom_minus : forall (X Y:preab_cat) (f:preab_cat X Y), preab_cat X Y;
hom_minus_morphism : forall (X Y:preab_cat) (f1 f2:preab_cat X Y),

f1 == f2 -> hom_minus f1 == hom_minus f2;
hom_minus_is_minus_l : forall (X Y:preab_cat) (f:preab_cat X Y),

(hom_plus f (hom_minus f)) == zerom ;
hom_minus_is_minus_r : forall (X Y:preab_cat) (f:preab_cat X Y),

(hom_plus (hom_minus f) f) == zerom ;
comp_plus_linear : forall (X Y Z:preab_cat) (f1 f2:preab_cat X Y)

(g:preab_cat Y Z),
(hom_plus f1 f2)!g ==
hom_plus (f1!g) (f2!g);

comp_plus_colinear : forall (X Y Z:preab_cat) (f:preab_cat X Y)
(g1 g2:preab_cat Y Z),
f!(hom_plus g1 g2) ==
hom_plus (f!g1) (f!g2);

comp_minus_linear : forall (X Y Z:preab_cat) (f:preab_cat X Y)
(g:preab_cat Y Z),
(hom_minus f)!g == hom_minus (f!g);

comp_minus_colinear : forall (X Y Z:preab_cat) (f:preab_cat X Y)
(g:preab_cat Y Z),
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f!(hom_minus g) == hom_minus (f!g);
biproduct :
forall (A B:preab_cat),
{A_B:preab_cat &
{pA:preab_cat A_B A &
{pB:preab_cat A_B B &
{iA:preab_cat A A_B &
{iB:preab_cat B A_B |
hom_plus (pA!iA) (pB!iB) == id /\
iA!pA == id /\ iB!pB == id /\
iA!pB == zerom /\ iB!pA == zerom }}}}}

ker_obj : forall (X Y : preab_cat) (f:preab_cat X Y), preab_cat
ker_arr : forall (X Y : preab_cat) (f:preab_cat X Y),

preab_cat (ker_obj f) X;
ker_univ_arr : forall (H X Y : preab_cat) (f:preab_cat X Y)

(h:preab_cat H X) (p: h!f == zerom ),
preab_cat H (ker_obj f);

ker_univ_com : forall (H X Y : preab_cat) (f:preab_cat X Y)
(h:preab_cat H X) (p: h!f == zerom ),
h == (ker_univ_arr f h p)!(ker_arr f);

ker_univ_uniq : forall (X Y:preab_cat) (f:preab_cat X Y),
(h:preab_cat H X) (p: h!f == zerom ),
(i:preab_cat H (ker_obj f)),
(q: h == i!(ker_arr f)),
i == ker_univ_arr f h p;

coker_obj : forall (X Y : preab_cat) (f:preab_cat X Y), preab_cat
coker_arr : forall (X Y : preab_cat) (f:preab_cat X Y),

preab_cat X (coker_obj f);
coker_univ_arr : forall (H X Y : preab_cat) (f:preab_cat X Y)

(h:preab_cat Y H) (p: f!h == zerom ),
preab_cat (coker_obj f) H;

coker_univ_com : forall (H X Y : preab_cat) (f:preab_cat X Y)
(h:preab_cat X H) (p: f!h == zerom ),
h == (coker_arr f)!(coker_univ_arr f h p);

coker_univ_uniq : forall (X Y:preab_cat) (f:preab_cat X Y),
(h:preab_cat Y H) (p: f!h == zerom ),
(i:preab_cat (coker_obj f) H),
(q: h == (coker_arr f)!i),
i == coker_univ_arr f h p;

}.

Notation "0" := (zerom) : preabelian_category_scope.
Notation "f + g" := (hom_plus f g) : preabelian_category_scope.
Notation "~ f" := (hom_minus f) : preabelian_category_scope.
Notation "f - g" := (f+~g)%preab : preabelian_category_scope.

The Test Example in Type Theory

We use implicit coercions to be able to write write both C for the type obj C of
objects of C and C A B for the type hom C A B of morphisms from A to B.
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Variable C:preabelian_category.

Variable G:C.
Variable h d:C G G.

Variable (dd_zero: d!d == 0) (hh_zero : h!h == 0) (hdh_h : h!d!h == h).

Definition p := d!h+h!d.

Lemma ph_h : p!h == h.

Lemma uv_v_implies_id_minus_u_v_zero :
forall u v:C G G, u!v == v -> (id-u)!v == 0.

Lemma id_minus_p_h_zero : (id-p)!h == 0.

Lemma hp_h : h!p == h.

Lemma vu_v_implies_v_id_minus_u_zero :
forall u v:C G G, v!u == v -> v!(id-u) == 0.

Lemma h_id_minus_p_zero : h!(id-p) == 0.

Lemma pp_p : p!p == p.

Lemma id_minus_p_p_zero : (id - p)!p == 0.

Lemma p_id_minus_p_zero : p!(id - p) == 0.

Definition K := ker_obj p.
Definition i : C K G := ker_arr p.

Lemma ip_zero : i!p == 0.

Lemma ih_zero : i!h == 0.

Definition j : C G K := ker_univ_arr p (id - p) id_minus_p_p_zero.

Lemma ji_id_minus_p : j!i == id - p.

Lemma hj_zero : h!j == 0.
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Abstract. Many functions in classical mathematics are largely defined
in terms of their derivatives, so Bessel’s function is “the” solution of
Bessel’s equation, etc. For definiteness, we need to add other properties,
such as initial values, branch cuts, etc. What actually makes up “the
definition” of a function in computer algebra? The answer turns out to
be a combination of arithmetic and analytic properties.

1 Introduction

The claim is often made (these days generally informally) that a given computer
algebra system “understands” tan, or some other function, generally a function
defined through some analytic process. Here we ask three questions.

1. What does this mean?
2. What might it mean?
3. How should a system “understand” such a new function?

More generally, to what extent does such an analytic process, or a built-in func-
tion, define a function, and what properties does such a function have?

Notation: throughout this paper, the term ‘function’ means a total1 function
from R to R or C to C. The principles apply to functions Rn to R or Cn to C,
but we shall not consider such functions here. C will denote an arbitrary field of
constants (of characteristic zero). From the point of view of differential algebra,
x will be the variable of differentiation/integration, i.e. x′ = 1. From the point of
view of functions, x is the variable being evaluated. Functions such as log have
the meaning given in [1], as refined by [9].

We remind the reader of a couple of definitions from differential algebra.

Definition 1. θ is said to be elementary over a differential field K if one of the
following is true:

(a) θ is algebraic over K;
(b) θ′ = η′/η for some η ∈ K (we write θ = log η);
(c) θ′ = η′θ for some η ∈ K (we write θ = exp η).
� The author is grateful to the referees, whose thoughtful comments significantly im-

proved the paper. He is also grateful to Dr. Bradford for his comments.
1 Or at least “total with singularities”. We then define equality f = g to mean that, at

all x where f and g are both defined, f(x) = g(x) [12]. A full exposition of removable
singularities would be a paper in itself.
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The object f is said to be elementary over K if it can be expressed in some
K(θ1, . . . θn) with each θi elementary over K(θi . . . θi−1). If K is omitted, C(x)
is assumed.

Much of the theory of integration [5] is cast in terms of elementary functions.
We can generalise the concept as follows.

Definition 2. θ is said to be Liouvillian over a differential field K if one of the
following is true:

(a) θ is algebraic over K;
(b) θ′ = η for some η ∈ K (we write θ =

∫
η);

(c) θ′ = η′θ for some η ∈ K (we write θ = exp η).

The object f is said to be Liouvillian over K if it can be expressed in some
K(θ1, . . . θn) with each θi Liouvillian over K(θi . . . θi−1). If K is omitted, C(x)
is assumed.

Note that, even if K is a field of functions embedded in R → R (or C → C),
there is no requirement that f should be such a function: we have merely stated
a property of the abstract derivative of f . In practice, we also want each θi to be
an elementary (resp. Liouvillian) function as well, i.e. that its numerical values,
as well as its differential properties, be specified.

Definition 3. Let K be a field of functions in R → R (or C → C). f(x), a
function from R → R (or C → C) is said to be an elementary (resp. Liouvillian)
function if it lies in some elementary (resp. Liouvillian) extension K(θ1, . . . θn)
of K.

However, even this is not enough.

Definition 4. Let K be a field of functions in R → R (or C → C). f(x), a
function from R → R (or C → C) is said to be a proper elementary (resp.
Liouvillian) function if it lies in some elementary (resp. Liouvillian) extension
K(θ1, . . . θn) of K, where each is θi proper elementary (resp. Liouvillian) over
K(θi . . . θi−1), and, for each x where both are defined,

(f ′)(x) = lim
ε→0

f(x + ε)− f(x)
ε

. (1)

Furthermore, we require that the right-hand side of (1) be defined almost every-
where.

As examples of the various pathologies that can occur, we give the following
examples, where K is the field Q(x) of rational functions C → C equipped with
the derivation induced by x′ = 1.

1. K(θ) where θ′ = 1
x . Here θ is merely an abstract symbol, not a function at

all.
2. K(θ) where θ′ = 1

x and θ : x �→ 0. Here θ is elementary, and a function, but
not a proper elementary function since equation (1) is violated.
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3. K(θ) where θ′ = 1
x and θ : x �→

{
1 x ∈ Q
0 x /∈ Q . Here equation (1) is satisfied,

but only because the right-hand side is nowhere defined, and therefore this
falls foul of the last clause in definition 4.

4. K(θ = log(x)+42) where θ′ = 1
x . This is indeed a proper elementary function

in the sense of definition 4, even though it is not “what we all mean by” log x.
5. K(θ) where θ′ = 1

x and θ : x �→ log x+
{ 0 x > 0
−iπ x < 0

. As a function R → R

this is log |x|, and is a proper elementary function in our sense. Whether it
is “what we all mean by” log x has been debated elsewhere [31].

2 What Does It Mean?

1. Numerical evaluation. Generally speaking, if the input is real, this means real
evaluation where possible. To do numerical evaluation, one has to choose the
branch cuts (if there are any) of the relevant function — see [9].

2. Plotting — generally a consequence of the above, though more can in fact
be done [2] if the function is better “understood”.

3. Differentiation. This property is generally hard-coded for some functions,
with an extension mechanism for others, e.g. defining diff/f for a function
f in Maple, or giving a symbol a !*DF property in REDUCE.

4. Integration. This is the difficult one, and is discussed during much of the
rest of this paper.

5. Special values. This is not the same as numerical evaluation (though the two
can easily be confused): sin(π) is precisely 0, whereas

sin(3.1415926535897932384626433) = 8.32795× 10−26

(with an appropriate setting of Digits or the equivalent). This is a case
where the precise nature, and the adherence [4], of the branch cuts is critical:
log(−1.0 + εi) might be near either of πi or −πi, but log(−1) has (with the
standard definitions) to be πi.

6. Simplification. Some of this is built in, e.g. for even/odd functions, as in
sin(−x) and cos(−x): other simplifications can be invoked via commands
such as expand or collect, or by giving functions properties (REDUCE).

3 Defining Functions

There are various ways by which new functions can be defined.

3.1 By Explicit Formulae, Normally Composition

“Let h(x) = f(g(x))”. Provided that f and g are “understood”, and that the
system knows the chain rule, this more or less means that the system “under-
stands” h, at least as well as it understands f(g(x)). This may be “not at all”,
as in the case of the real-valued function log log sinx, which is nowhere defined.
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Numerical and symbolic evaluation and plotting are, at least conceptually,
simple. Difficulties can arise, though, if we expect the algebra system to remove
removable singularities, i.e.

h(x) =
{

f(g(x)) g(x) well-defined
limy→x f(g(y)) otherwise. (2)

Expecting a system to perform (2) automatically is, in the author’s opinion,
expecting too much, though possibly systems might provide some help in this
direction. Problems ought, where possible, to be signalled at definition time
rather than at use time, so an explicit, tool-supported, definition mechanism is
probably what should be provided. An example of what can go wrong is provided
by arctan

(
1

1−x

)
, where there is a jump discontinuity at x = 1 corresponding to

the “discontinuity at infinity” of arctan.

3.2 By Indefinite Integration

One might define erf to be the integral2 of exp(−x2), or, more formally,

erf(x) =
∫ x

0

exp−t2 dt,

in order to fix the constant of integration.
Such a definition tells us explicitly how to evaluate the function numerically3,

and implicitly how to differentiate the new function. Risch’s algorithm [27,5] will
tell us whether this is a ‘new’ function or can be defined in terms of previously
known ones (though current systems are not always good at getting the constant
of integration right).

Indefinite integration is much harder. All integration algorithms for elemen-
tary functions rely on Liouville’s principle: that the only new elementary func-
tions which can be introduced are logarithms, and that only with constant co-
efficients. This theorem remains true even if the integrand is not elementary.
However, this is not what one actually wants. Just as we added a new logarithm
to compute

∫
1

x log x = log log x, we would like to add new error functions, or
whatever is in the domain of discourse, and this is not always obvious. The first
term in the following integral (taken from [7]) is pretty obvious, but it is far
from clear where the last term comes from.∫

erf (ax) erf (bx) = xerf (ax) erf (bx)+

e−a2x2
erf (bx)√
πa

+
e−b2x2

erf (ax)√
πb

− erf
(√

a2 + b2x
)(a

b
+

b

a

)
1√
π

1√
a2 + b2

2 In practice, one introduces a multiplicative factor of 2/
√

π to keep the statisticians
happy, but the principle is the same.

3 And hence how to plot it. However, there are much better, and more stable, ways of
plotting an integral than via a sequence of de novo numerical evaluations.
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Similarly [8] ∫
x

log2 x
= 2 li(x2)− x2

log x
, (3)

where li(x) =
∫

1
log x , and one could wonder where the li(x2) comes from.

In general, one needs a fresh generalisation of Liouville’s Principle for each
new function generator introduced. Some such have been proved [3,7,8,19,20],
but even the most general [30] is far from complete: it deals with EL-elementary
extensions subject to the restriction that, for each H in case (e) below, the degree
of the numerator of H does not exceed the degree of the denominator by more
than 1.

Definition 5. θ is said to be EL-elementary over a differential field K if one
of the following is true:

(a) θ is algebraic over K;
(b) θ′ = η′/η for some η ∈ K (we write θ = log η);
(c) θ′ = η′θ for some η ∈ K (we write θ = exp η);
(d) θ′ = ζ′R′(ζ)ηG(η)) and η′ = ζ′R′(ζ)η for some ζ ∈ K (we might4 write

η = exp(R(ζ)) and θ =
∫

G(exp(R(ζ))));
(e) θ′ = ζ′ S′(ζ)

S(ζ) H(η)) and η′ = ζ′ S′(ζ)
S(zη) for some ζ ∈ K (we might4 write

η = log(S(ζ)) and θ =
∫

H(log(S(ζ)))),

where each of G, H, R, S are prescribed5 rational functions of one variable. The
function f is said to be EL-elementary over K if it can be expressed in some
K(θ1, . . . θn) with each θi EL-elementary over K(θi . . . θi−1). If K is omitted,
C(x) is assumed.

For example, error functions would be coped with by having (G, R) = (t �→
t, t �→ −t2).

Special values are essentially then problems of definite integration. Tricks such
as evaluating erf(∞) by writing

erf2(∞) =
(∫ ∞

0

2√
π

e−x2
dx

)(∫ ∞

0

2√
π

e−y2
dy

)
=
∫ ∞

0

∫ ∞

0

4
π

e−x2−y2
dxdy

=
∫ ∞

0

∫ π/2

0

4
π

e−r2
rdrdθ

= 1

are within the scope of heuristics rather than algorithms at the current time.
4 The use of “might” here indicates that the problem of introducing new constants by

this formulation of such an extension is a delicate one.
5 This is the original definition from [30]. In practice the (G, R) and (H,S) are pre-

scribed pairs of rational functions, so that a given G goes with a given R, etc.
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Even/odd simplifications are generally possible, but deducing further rules is
again a matter for heuristics. If F =

∫
0
f , then

F (a + b) =
∫ a

0

f +
∫ a+b

a

f = F (a) +
∫ a+b

a

f,

and if the last term can be transformed into
∫ c

0
f , then a simplification can be

deduced.

3.3 By First Order Linear Differential Equations

In general, one would consider a y defined by

y′ + fy = g, (4)

with an initial condition equivalent to the constant of integration discussed
above. Let F =

∫
f and y = z exp(−F ). Then (4) becomes

z′ exp(−F )− fz exp(−F ) + fz exp(−F ) = g, (5)

i.e. z′ = g exp(F ). Hence

y = exp(−F )
∫

(g exp(F )) , (6)

and the problem is reduced to the previous one, i.e. the solution is Liouvillian
over the field generated by f and g.

However, there are some caveats here [11]. The first is that any logarithms with
rational coefficients in F have to be expressed explicitly, and the exponentiation
has to perform the “simplification” exp log(h)) �→ h, thereby possibly adding
radicals to the mix. The second is that, if F has any components other than
logarithms with rational coefficients, then

∫
(g exp(F )) = G exp(F ), and then

exp(−F ) and exp(F ) cancel, and the integration is in fact the solution of the
original differential equation.

3.4 By Higher Order Linear Differential Equations

If we take second-order linear differential equations with coefficients in C(x),
there are four possibilities [22] (generalised in [29] to Liouvillian coefficients).

(1) There is a solution of the form e
∫

f , where f is a rational function. In this
case, the differential operator factorises, and we get a first order equation,
the solutions of which are always Liouvillian.

(2) The first case is not satisfied, but there is a solution of the form e
∫

f , where
f satisfies a quadratic equation with rational functions as coefficients. In this
case, the differential operator factorises and we get a first order equation,
the solutions of which are always Liouvillian.
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(3) The first two cases are not satisfied, but there is a non-zero Liouvillian
solution. In this case, every solution is an algebraic function.

(4) The non-zero solutions are not Liouvillian.

We could extend the definition of “Liouvillian” to allow solutions of second-order
differential equations (normally called “Eulerian”), and ask whether differential
equations can be solved in terms of Eulerian functions [28], and so on, but the
underlying differential Galois theory becomes intractable.

Is this function “new”?. A more fundamental question might be: “can special
function g, defined as a solution of equation (g), be expressed in terms of special
function f , defined as a solution of equation (f)?” Assuming that (f) and (g)
have order greater than one, this would be more precisely defined as “can special
function g, defined as a solution of equation (g) with given initial conditions, be
defined in terms of a basis f1, . . . , fn of solutions of (f)?”

An example is given by the Bessel functions. [1, chap. 9] defines Jν as solutions
of

x2y′′ + xy′ + (x2 − ν2)y = 0, (7)

whereas in [1, chap. 10], jn is defined as solutions of

x2y′′ + 2xy′ + (x2 − n(n + 1))y = 0. (8)

These are connected by jn(x) =
√

π
2xJn+ 1

2
(x). Can such a relationship be de-

duced automatically? If we know that jn(x) should be of the form6 Jn+ 1
2
(x)/f(x),

the fact that f(x) is of the form c
√

x can be deduced relatively easily. If we as-
sume merely that jn(x) is of the form Jk(x)/f(x), the correct solution can still
be deduced. Similarly, if we are faced with

x2y′′ + 2xy′ + 4(x4 − n(n + 1))y = 0, (9)

and if we suspect that the solution is of the form Jn(f(x)), deducing f(x) = x2

is not too hard. However, given

4 (y′′ (x))x2 +
(
16 x4 − 16 n2 + 1

)
y (x) (10)

and the suspicion that y is of the form Jn(f(x))g(x), the author knows of no
way of recovering the true answer — Jn(x2)

√
x. It is possible that the results of

[21] might help us to know which equation was related to which other equation,
but, despite the call in [24], little seems to have been done in this direction.

Properties of the Function. The differential equation and suitable initial
conditions will, in general, allow numerical evaluation, and thence plotting3.
Formal integration of the differential equation will lead to a corresponding equa-
tion for the integral, so the question of integration reduces to the “is it related”
question.

Even/odd simplification rules can be deduced from the differential equation,
where appropriate. More general rules, and special values, are even more in-
tractable than they are for integrals.
6 The author is not sure whom the factor

√
π
2

is meant to please.
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3.5 By Functional Equations

The simplest functional equation is the polynomial one: y such that P (x, y) = 0.
If this is soluble by radicals, then we can import the branch cut for logarithm
(though the result may be messy, and we need to worry about false solutions,
as in Cardan’s formula for the cubic [25]).. If it is not soluble by radicals, then
there appears to be no “natural” placement for the branch cuts.

About the simplest non-algebraic functional equation is yey = x, whose solu-
tion is the Lambert W function [10]. This is not elementary or Liouvillian [6],
but can also be defined by a non-linear differential equation: W ′(x) = W (x)

(1+W (x))x .
Just as log has infinitely many variants, separated by 2kπi, which can be chosen
to have a common branch cut, conventionally7 the negative real axis, with the
cut itself adhering [4] to the upper half-plane, so W has infinitely many branches,
but the description is somewhat more complex [10,17].

The analysis of W was very much ad hoc, and the author knows of no sys-
tematic approach to such equations, unless they can be reduced to differential
equations, as in the next section.

3.6 By Non-linear Differential Equations

The Lambert W function (see above) is one such. The question posed above “is
this function definable in terms of that one”, becomes even more relevant in this
setting, and there are some surprising results: [14] gives the solution8 to

(4y + 2x + 3)y′ − 2y − x− 1 = 0 (11)

as
4096 exp(−W (32768 exp(8x + c)) + 8x + c)− x

2
− 5

8
. (12)

The author knows of no way of deducing this in any sensible manner. The
constant 5/8 is easy enough to determine, as is the 1/2, but the overall struc-
ture of the integral, necessary for any ‘method of undetermined coefficients’ to
succeed, is not obvious.

3.7 By Definite Integration

The classic example of this is the Γ function, defined by

Γ (z) =
∫ ∞

0

tz−1e−tdt. (13)

This is continuous over the whole of the complex plane, except for z=0,−1,−2 . . ..
It cannot be defined by a differential equation [16]. As far as the author was9

7 There is nothing special about this choice: see [9].
8 A reviewer pointed out that the solution can also be found by Maple as

W (c exp(8x)) − x
2
− 5

8
, but this does not fully answer the question: does equation

(11) have a solution in the form of (12) with fully undetermined coefficients?
9 The reviewer pointed out [15], which has some techniques for negative results.
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aware, there have been no attempts to systematise this analysis. There are heuris-
tics in some packages (e.g. Maple), which sometimes produce differential equa-
tions. Hence it seems that, at the current time, there is nothing that a system
can do in general except say “OK: you seem to have defined a function, which
I can (generally) evaluate numerically”.

3.8 Interrelations Between Methods

As we have seen, W can be defined either by a functional equation or by a
(nonlinear) differential equation. In this case, going from the functional equation
to the differential equation is fairly straight-forward, and mechanised in Maple’s
PDEtools, but the author knows no general way of reversing the process, or of
knowing whether it is reversible.

4 Branch Cuts

These are inevitable for certain functions defined by integration or other analytic
processes. Just to remind ourselves, let us look again at the branch cut for log.∮

C
1
xdx = 2πi, where C is the unit circle (traversed counter-clockwise). Hence

any continuous definition of log z =
∫ z

1
1
xdx is bound to be multi-valued by

multiples of 2πi. Hence the minimum10 branch cut necessary is a cut from 0 to
(complex) infinity, with the value of log decreasing by 2πi as one crosses the
branch cut in the direction of C (and increasing if one crosses it the other way).
This poses two questions.

– What shape and where should the cut be?
– What happens on the cut?

In answer to the first, Occam’s razor suggests that the cut might as well be a
straight line from the origin to complex infinity. Note that this is not mathemati-
cally necessary, merely philosophically desirable11. Occam’s razor again suggests
that the cut might as well be along one of the axes. The current favourite [1]
seems to be along the negative real axis, though the positive real axis has also
been used.

In answer to the second question, clearly any behaviour is possible. Adherence
to one side or the other (i.e. the value on the cut is the limit as you approach
the cut from a given direction) seems a reasonable stipulation, as does the fact
that the decision be taken consistently on the cut (if t parameterises the cut, we
could insist on upper continuity for rational t, and lower continuity for irrational
t, but this seems perverse) where possible. We stipulate “where possible” because

10 We could always add “unnecessary” and cancelling branch cuts by arbitrary (but
cancelling) amounts, but we will assume that this is not done.

11 We note that the International Date Line, which can be viewed as a branch cut of
7
√

is, for geopolitical reasons, not a straight line, but is piecewise straight, at least
in its current incarnation [13, international date.html].
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branch cuts may bifurcate or merge: see [17, Figure 2] Beyond this, logic and
Occam’s razor make no suggestions. There are two common schools of thought,
both of which can lay claim to being “consistent” in their own ways.

Independent. consistency. Here we have a rule for all branch cuts. The common
one is “counter-clockwise consistency”, advocated in [18], see also [26]. Here
one defines continuity on the branch cut as continuity with the region from
which one approaches the cut when circling the origin counter-clockwise.

Dependent. consistency. Here one stipulates that, if h can be derived from g,
i.e. h(x) = f1(g(f2(x))) where f1 and f2 have no, or “simpler” cuts, then
the branch cuts and adherence of h are derived from those of g. This is
largely the approach taken in [1]: one defines the branch cuts for log and the
rest follow. Difficulties occur when there are alternative definitions for h, say
h = f̂1(g(f̂2(x))), which might induce different branch cuts or adherence.
Hence this approach only makes sense when a particular definition of h in
terms of g is fixed. [26].

5 Conclusion

There has been comparatively little systematic work in this area: an early at-
tempt was [24], which urged the consideration of [21], but little has been done
in this direction. Perhaps the most interesting is [23].

To define functions completely, one has to know the branch cuts and their
behaviour, and nothing has been done about automating this — largely because
there is no consistent philosophy here. Indeed, it would be a significant step
forward to have a system capable of checking that a definition of, say, a proper
Liouvillian function and its branch cuts was consistent.

Hence the answer to the question “how should a system understand a new
function” at the moment seems to be “we don’t know, in general”.
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Abstract. An axiomatic theory represents mathematical knowledge
declaratively as a set of axioms. An algorithmic theory represents math-
ematical knowledge procedurally as a set of algorithms. A biform the-
ory is simultaneously an axiomatic theory and an algorithmic theory. It
represents mathematical knowledge both declaratively and procedurally.
Since the algorithms of algorithmic theories manipulate the syntax of ex-
pressions, biform theories—as well as algorithmic theories—are difficult
to formalize in a traditional logic without the means to reason about
syntax. Chiron is a derivative of von-Neumann-Bernays-Gödel (nbg) set
theory that is intended to be a practical, general-purpose logic for mech-
anizing mathematics. It includes elements of type theory, a scheme for
handling undefinedness, and a facility for reasoning about the syntax
of expressions. It is an exceptionally well-suited logic for formalizing bi-
form theories. This paper defines the notion of a biform theory, gives an
overview of Chiron, and illustrates how biform theories can be formalized
in Chiron.

1 Introduction

The mission of mechanized mathematics is to develop software systems that
support the process people use to create, explore, and apply mathematics. There
are historically two major approaches to mechanized mathematics, computer
theorem proving and computer algebra. Computer theorem proving emphasizes
the conjecture proving aspect of the mathematics process and usually represents
mathematical knowledge as “axiomatic theories”. On the other hand, computer
algebra focuses on the computational aspect of the mathematics process and
usually represents mathematical knowledge as “algorithmic theories”.

An axiomatic theory is a set of formulas in a language L called axioms that
serve as the background assumptions of the theory. The axioms encode a set of
mathematical truths, namely, the formulas of L that are the logical consequences
of the axioms. There is thus a clear demarcation between what is assumed (the
axioms) and what is derived (the logical consequences of the axioms). The deduc-
tion and computation rules for reasoning within the theory are usually expressed
in the metalanguage of L, not in L itself. This is because deduction and com-
putation rules cannot directly manipulate values such as numbers, functions,
and sets; they can only manipulate the expressions that denote these values.
Traditional logics do not usually provide a facility for formalizing the syntax of

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 66–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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expressions. As a result, neither the specifications of deduction and computation
rules nor the algorithms that implement them can be directly expressed in an
axiomatic theory.

An algorithmic theory is a set of algorithms that manipulate expressions in
a language L. The background assumptions of the theory and the specifications
of the algorithms are usually not part of an algorithmic theory; they are instead
part of the informal metatheory of the theory. An algorithmic theory can be
used to manipulate expressions, but it cannot be used to understand what the
results of the manipulations mean. Also, unlike an axiomatic theory, there is no
clear demarcation between the algorithms that are primitive in the theory and
those that are derived from the primitive algorithms.

A biform theory T is a set Ω of formulas and rules in a language L. A rule in
L consists of an algorithm called a transformer that transforms a tuple of input
expressions of L into an output expression of L and a meaning formula that
specifies how the values of the input expressions are related to the value of the
output expression. For each tuple I of input expressions, the meaning formula
M reduces to a formula MI that specifies the relationship between the values of
the members of I and the value of the resulting output expression. MI is said
to be an instance of the rule.

The notion of a biform theory merges the notions of an axiomatic theory
and an algorithmic theory. In fact, a biform theory is simultaneously both an
axiomatic theory and an algorithmic theory. The axiomatic theory of T , written
Taxm, is the set of formulas in Ω together with the set of the instances of all
the rules in Ω, while the algorithmic theory of T , written Talg, is the set of the
transformers of all the rules in Ω.

The formulas and rules in Ω are called the axioms of T . They are implicit
background assumptions of T , and the axioms of Taxm are the explicit back-
ground assumptions of T . A rule is a logical consequence of T if its instances
are logical consequences of Taxm. Thus in a biform theory there is a clear de-
marcation between primitive formulas and rules whose correctness is assumed
and derived formulas and rules whose correctness is a logical consequence of the
primitive formulas and rules.

In summary, a biform theory includes both formulas and rules as primitive
assumptions. A rule consists of an algorithm that manipulates expressions and
a formula that specifies what the manipulations of the expressions mean se-
mantically. A biform theory is simultaneously both an axiomatic theory and an
algorithmic theory. The meaning of an algorithm of the algorithmic theory is un-
derstood in the context of the axiomatic theory. And there is a clear definition
of what a derived formula or rule is in a biform theory.

The notion of a biform theory was first introduced as part of ffmm, a Formal
Framework for Managing Mathematics [11] developed as part of the MathScheme
project [15] at McMaster University. One of the principal goals of ffmm is to
integrate and generalize computer theorem proving and computer algebra. Bi-
form theories play a central role in ffmm by providing a formal context in which
deduction and computation can be merged. In general, biform theories are useful
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for formalizing mathematics in which deduction and computation are intimately
related. For applications of biform theories outside of ffmm, see [4,5,6].

A mechanized mathematics that utilizes biform theories to represent mathe-
matical logic needs a logic in which biform theories can be expressed. At the very
least, it must be possible to express in the logic the meaning formulas of rules.
Otherwise, there is no formal basis for understanding what a transformer of a
rule means. This is problematic because a meaning formula expresses statements
both about the syntax of expressions and what the expressions mean. Traditional
logics are usually not equipped with the means to express statements about syn-
tax and to reason about syntax.

The transformer of a rule does not need to be expressed in the logic. As long
as its corresponding meaning formula is expressed in the logic, it can treated
as a black-box algorithm that is assumed to behave according to its meaning
formula. In other words, the transformer’s rule would be considered as an axiom
of the biform theory. Hence an algorithm in the form of a program in a high-level
programming language can be made into a perfectly legitimate rule if a meaning
formula for it can be expressed in the logic.

Chiron [7,9] is a derivative of von-Neumann-Bernays-Gödel (nbg) set theory
that is intended to be a practical, general-purpose logic for mechanizing mathe-
matics. It includes elements of type theory, a scheme for handling undefinedness,
and a facility for reasoning about the syntax of expressions. Chiron has a high
level of both theoretical and practical expressivity [7]. It is an exceptionally well-
suited logic for formalizing biform theories. In particular, the meaning formulas
of rules can be directly expressed in Chiron.

This paper defines the notion of a biform theory, gives an overview of Chiron,
and illustrates how biform theories can be formalized in Chiron. Section 2 defines
the notions of a transformer, a rule, and a biform theory. Section 3 gives a quick
introduction to Chiron and shows how rules are expressed in Chiron. Section 4
sketches the development in Chiron of a nontrivial example of a biform theory.
The paper ends with a conclusion in Section 5 that discusses related and future
work.

2 Biform Theories

We present here a formulation of a biform theory that is simpler than the for-
mulation given in [11].

2.1 General Logics

A general language is a pair L = (E ,F) where E is a set of syntactic entities
called the expressions of L and F ⊆ E is a set of expressions called the formulas
of L. For example, if F is a first-order language, then LF = (S∪F ,F) is a general
language where S and F are the sets of terms and formulas of F , respectively.
In the rest of this paper, let L = (E ,F) be a general language.

A general logic is a set of general languages with a notion of logical conse-
quence. In the rest of this paper, let K be a general logic. L is a language of K
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if it is one of the general languages of K. If L is a language of K and Σ ∪ {A}
is a set of formulas of L, then Σ |=K A means A is a logical consequence of Σ
in K. For example, let FOL be a general logic representation of first-order logic
such that L is a language of FOL iff L = LF for some first order language F
and Σ |=FOL A means A is a logical consequence of Σ in first-order logic.

An axiomatic theory in K is a pair T = (L, Γ ) where L = (E ,F) is a language
of K and Γ ⊆ F . L is the language of T , and Γ is the set of axioms of T . A
formula A of L is a logical consequence of T if Γ |=K A.

2.2 Transformers

For n ≥ 0, an n-ary transformer in L is a pair Π = (π, π̂) where π is a symbol
and π̂ is an algorithm that implements a (possibly partial) function fπ̂ : En → E .
The symbol π serves as a name for the algorithm π̂. There is no restriction on
how the algorithm is presented. For example, it could be a lambda-expression of
L or a program written in a high-level programming language like C or Java.

Let dom(Π) denote the domain of π̂, i.e., the subset of En on which fπ̂ is
defined. Suppose E1, . . . , En are expressions in E . If (E1, . . . , En) ∈ dom(Π),
the expression π(E1, . . . , En) denotes the output of π̂ when given E1, . . . , En as
input, i.e., it denotes fπ̂(E1, . . . , En) ∈ E (and is thus defined). If (E1, . . . , En) ∈
dom(Π), π(E1, . . . , En) does not denote anything (and is thus undefined). The
expression π(E1, . . . , En) is not required to be in E ; it will usually be an expres-
sion of the metalanguage of L but not of L itself.

Example 1. Suppose LF = {EF ,FF } is the general language corresponding to a
first-order language F . Let Π = (π, π̂) be a unary transformer in LF such that:

1. π(E) is defined iff E ∈ FF .
2. If π(A) is defined, it denotes a formula B ∈ FF that is in prenex normal

form and is logically equivalent to A.

That is, the algorithm π̂ transforms any formula of LF into a logically equivalent
formula in prenex normal form. The expression π(E) cannot be an expression
in EF (without some mechanism, such as Gödel numbering, for formalizing the
syntax of LF in LF itself). �

Example 2. Suppose LF = {EF ,FF } is again the general language correspond-
ing to a first-order language F . Let Π = (π, π̂) be a ternary transformer in LF

such that:

1. π(E1, E2, E3) is defined iff E1 is a term of F , E2 is a variable of F , and E3

is a formula of F .
2. If π(t, x, A) is defined, it denotes the result of simultaneously substituting t

for each free occurrence of x in A.

That is, given t, x, A, the algorithm π̂ transforms the formula A into the formula
A[x �→ t]. Again the expression π(E1, E2, E3) cannot be an expression in EF . �
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Example 3. Let STT be a general logic representation of simple type theory [8].
Suppose T = (L, Γ ) is an axiomatic theory of a complete ordered field in STT
and that we have defined in T a type real of real numbers and the basic concepts
of calculus such as limits, continuity, derivatives, etc. Let Π = (π, π̂) be a unary
transformer in L such that:

1. π(E) is defined iff E is an expression of L of type real → real.
2. If π(E) is defined, it is an expression of L of type real → real that denotes

the derivative of the function denoted by E.

That is, π̂ is an algorithm that differentiates expressions that denote functions
on the real numbers. �

An algorithmic theory is a pair T = (L, Δ) where L is a general language and Δ
is a set of transformers in L. L is called the language of T , and Δ is the set of
algorithms of T . For more on transformers, see [10,11].

2.3 Rules

A rule in L is a pair R = (Π, M) where:

1. Π = (π, π̂) is an n-ary transformer in L.
2. M is a formula that uses π to relate the values of the inputs to π̂ to the

value of the output of π̂.

The transformer of R, written trans(R), is Π , and the meaning formula of R,
written mean(R), is M . The meaning formula M , which specifies the semantic
relationship between the tuple of inputs and the output of the algorithm π̂,
will usually be an expression of the metalanguage of L but not of L itself. For
each n-tuple I = (E1, . . . , En) of inputs to π̂, we assume that M reduces to
a formula MI of L which is called the instance of M with respect to I. An
instance of M specifies the relationship between the values of a given tuple of
input expressions and the value of the resulting output expression. Let inst(R)
be the set of instances of M . M can often be conveniently expressed as a formula
schema.

Example 4. Let R = (Π, M) where:

1. Π = (π, π̂) is the transformer in LF given in Example 1.
2. M is the formula schema

A ≡ π(A)

where A is a formula of LF .

If A is the formula p(c) ⊃ ∀x . q(x) (where c is a constant) and the result of
applying π̂ to (A) is ∀x . p(c) ⊃ q(x), then

(p(c) ⊃ ∀x . q(x)) ≡ (∀x . p(c) ⊃ q(x))

is the instance of M with respect to (A). �
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Example 5. Let R = (Π, M) where:

1. Π = (π, π̂) is the transformer in LF given in Example 2.
2. M is the formula schema

(x = t ∧A) ⊃ π(t, x, A)

where t is a term, x is a variable, and A is a formula of LF and t is free for
x in A.

If t is a term, x is a variable, and A is f(x, y) = g(x), then

(x = t ∧ f(x, y) = g(x)) ⊃ f(t, y) = g(t)

is the instance of M with respect to (t, x, A). �

Example 6. Let R = (Π, M) where:

1. Π = (π, π̂) is the transformer in the language L of the theory T given in
Example 3.

2. M is the formula schema

derivative(E) = π(E)

where E is of type real → real. derivative is an expression of L of type

(real → real) → (real → real)

that maps a function to its derivative. M thus asserts that the derivative of
the function denoted by E is the function denoted by π(E).

If E is λx : real . x2, then

derivative(λx : real . x2) = (λx : real . 2 · x)

is the instance of M with respect to (E). �

For the sake of convenience, we will view a formula A of L as a (transformer-less)
rule in L and assume that trans(A) is undefined, mean(A) = A, and inst(A) =
{A}.

2.4 Biform Theories

A biform theory in K is a pair T = (L, Ω) where L is a language of K and Ω
is a set of rules in L. (Ω may include formulas of L viewed as transformer-less
rules.) L is the language of T , and Ω is the set of axioms of T .

T can be viewed as simultaneously both an axiomatic theory and an algorith-
mic theory. The axiomatic theory of T is the axiomatic theory Taxm = (L, Γ ) in
K where

Γ =
⋃

R∈Ω

inst(R),

while the algorithmic theory of T is the algorithmic theory Talg = (L, Δ) where

Δ = {trans(R) | R ∈ Ω and trans(R) is defined} .
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The axioms of T—which are formulas and rules—are the background assump-
tions of T in an implicit form. The axioms of Taxm—which are formulas alone—
are the background assumptions of T in an explicit form. A rule R in L is a
logical consequence of T if, for all formulas A ∈ inst(R), A is a logical conse-
quence of Taxm. Thus, the axioms of T are trivially logical consequences of T .
Notice also that, since we are assuming that the formulas of L are rules in L,
every logical consequence of Taxm is also a logical consequence of T .

3 Chiron

A formal, complete presentation of the syntax and semantics of Chiron is given
in [9], and a shorter, more informal presentation is given in [7].

3.1 Values

The semantics of Chiron is based on the notion of a standard model which is an
elaboration of a model of nbg set theory. The basic values or elements in a model
of nbg are classes (which include sets and proper classes).1 A standard model
M includes other values besides classes, but classes are the most important.
M is derived from a structure, consisting of a nonempty domain Dc of classes
and a membership relation ∈ on Dc, that satisfies the axioms of nbg set theory
as given, for example, in [13] or [16]. The values of M include sets, classes,
superclasses, truth values, the undefined value, and operations.

A class of M is a member of Dc. A set of M is a member x of Dc such that
x ∈ y for some member y of Dc. That is, a set is a class that is itself a member
of a class. A class is thus a collection of sets. A class is proper if it is not a
set. A superclass of M is a collection of classes in Dc. We consider a class, as
a collection of sets, to be a superclass itself. Let Dv be the domain of sets of
M and Ds be the domain of superclasses of M . The following inclusions hold:
Dv ⊂ Dc ⊂ Ds. Dv is the universal class (the class of all sets), and Dc is the
universal superclass (the superclass of all classes).

t, f, and ⊥ are distinct values of M not in Ds. t and f represent the truth
values true and false, respectively. ⊥ is the undefined value which serves as the
value of undefined terms. For n ≥ 0, an n-ary operation of M is a total mapping
from D1 × · · · ×Dn to Dn+1 where Di is Ds, Dc∪{⊥}, or {t, f} for each i with
1 ≤ i ≤ n + 1. Let Do be the domain of operations of M . Ds ∪ {t, f,⊥} and Do

are assumed to be disjoint.

3.2 Expressions

Let S be a fixed infinite set of symbols that includes the 30 key words in Table 1.
The key words are used to classify expressions, identify different categories of
expressions, and name the built-in operators (see below).
1 Recall that values of a model of Zermelo-Fraenkel (zf) set theory includes only sets,

not proper classes.
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Table 1. The Key Words of Chiron

op type formula op-app var
type-app dep-fun-type fun-app fun-abs if
exist def-des indef-des quote eval
true false set class expr
expr-op expr-type expr-term expr-formula in
type-equal term-equal formula-equal not or

An expression of Chiron is defined inductively by:

1. Each symbol s ∈ S is an expression.
2. If e1, . . . , en are expressions where n ≥ 0, then (e1, . . . , en) is an expression.

Hence, an expression is an S-expression (with commas in place of spaces) that
exhibits the structure of a tree whose leaves are symbols in S. Let E be the set
of expressions of Chiron.

There are four special sorts of expressions: operators, types, terms, and formu-
las. An expression is proper if it is one of these special sorts of expressions, and an
expression is improper if it is not proper. Proper expressions denote values of M ,
while improper expressions are nondenoting (i.e., they do not denote anything).
Operators are used to construct expressions. They denote operations. Types are
used to restrict the values of operators and variables and to classify terms by their
values. They denote superclasses. Terms are used to describe classes. They denote
classes or the undefined value ⊥. Formulas are used to make assertions. They
denote truth values. A kind is the key word type, a type, or the key word formula.

A term is defined if it denotes a class and is undefined if it denotes ⊥. Every
term is assigned a type. Suppose a term a is assigned a type α. Then a is said to
be a term of type α. Suppose further α denotes a superclass Σα. If a is defined,
i.e., a denotes a class x, then x is in Σα. The value of a nondenoting term is the
undefined value ⊥, but the value of a nondenoting type or formula is Dc (the
universal superclass) or f (false), respectively. That is, the values for nondenoting
types, terms, and formulas are Dc, ⊥, and f, respectively.

There are 13 proper expression categories. They are shown in Table 2 in both a
compact notation in the middle and the official S-expression-like notation on the
right. O, P, Q, . . . denote operators, α, β, γ, . . . denote types, a, b, c, . . . denote
terms, A, B, C, . . . denote formulas, s, t, u, . . . denote symbols, e, e′, . . . denote
expressions, and k, k′, . . . denote kinds.

Table 3 defines additional compact notation for the built-in operators and
the universal quantifier. The compact notation also includes some customary
abbreviation rules (see [9]).

3.3 Quotation and Evaluation

If e is any expression, proper or improper, then

(quote, e)
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Table 2. Compact Notation

Expression Category Compact Notation Official Notation

Operator (s :: k1, . . . , kn+1) (op, s, k1, . . . , kn+1)
Operator application (s :: k1, . . . , kn+1) (op-app, (op, s, k1, . . . , kn+1),

(e1, . . . , en) e1, . . . , en)
Variable (x : α) (var, x, α)
Type application α(a) (type-app, α, a)
Dependent Function Type (Λ x : α . β) (dep-fun-type, (var, x, α), β)
Function application f(a) (fun-app, f, a)
Function abstraction (λx : α . b) (fun-abs, (var, x, α), b)
Conditional term if(A, b, c) (if, A, b, c)
Existential quantification (∃x : α . B) (exist, (var, x, α), B)
Definite description (ι x : α . B) (def-des, (var, x, α), B)
Indefinite description (ε x : α . B) (indef-des, (var, x, α), B)
Quotation �e� (quote, e)
Evaluation [[a]]ty (eval, a, type)

[[a]]α (eval, a, α)
[[a]]fo (eval, a, formula)

Table 3. Additional Compact Notation

Compact Notation Defining Expression
T (true :: formula)( )
F (false :: formula)( )
V (set :: type)( )
C (class :: type)( )
E (expr :: type)( )
Eop (expr-op :: type)( )
Ety (expr-type :: type)( )
Ete (expr-term :: type)( )
Efo (expr-formula :: type)( )
(a ∈ b) (in :: V, C, formula)(a, b)
(α =ty β) (type-equal :: type, type, formula)(α, β)
(a =α b) (term-equal :: C, C, type, formula)(a, b, α)
(a = b) (a =C b)
(A ≡ B) (formula-equal :: formula, formula, formula)(A, B)
(¬A) (not :: formula, formula)(A)
(a �∈ b) (¬(a ∈ b))
(a �= b) (¬(a = b))
(A ∨ B) (or :: formula, formula, formula)(A,B)
(∀x : α . A) (¬(∃ x : α . (¬A)))

is a term of type E called a quotation. The value of the quotation is a set, called
the construction of e, that represents the syntactic structure of the expression
e. Thus a proper expression e has two different meanings:

1. The semantic meaning of e is the value denoted by e itself.
2. The syntactic meaning of e is the construction denoted by (quote, e).
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If a is a term and k is a kind, then

(eval, a, k)

is an expression called an evaluation that is a type if k = type, a term of type
k if k is a type, and a formula if k = formula. Roughly speaking, if a denotes
a construction that represents an expression e, then the evaluation denotes the
value of e. If a denotes a construction that represents an expression in which the
symbol eval occurs, then the evaluation is undefined. This provision is needed to
block the liar paradox and similar semantically ungrounded expressions (see [9]).

3.4 Biform Theories in Chiron

Let L be a language of Chiron. An n-ary transformer in L is an n-ary transformer
Π = (π, π̂) where π is an n-ary operator (s :: E, . . . , E) in L (with E occurring
n + 1 times). A rule in L is a rule R = (Π, M) where Π = (π, π̂) is an n-ary
transformer in L and M is formula of Chiron having the form

∀ e1 . E1, . . . , en : En . M ′

where Ei is E, Eop, Ety, Ete, or Efo for all i with 1 ≤ i ≤ n. If a1, . . . , an are
quotations (of type E), then the instance of M with respect to (a1, . . . , an) is
the result of replacing each occurrence of π(a1, . . . , an) in

M [e1 �→ a1, . . . , en �→ a1]

with fπ̂(a1, . . . , an) if this is defined and with ⊥C (which denotes the undefined
value) if this is undefined. A biform theory in Chiron is a pair T = (L, Ω) where
L is a language of Chiron and Ω is a set of rules in L.

Example 7. Let R be the rule given in Example 4 expressed as a rule in a lan-
guage of Chiron. Then M would be the formula

∀ e : Efo . [[e]]fo ≡ [[π(e)]]fo,

and the instance of M with respect to (�p(0) ⊃ ∀x . q(x)�) would be

[[�p(0) ⊃ ∀x . q(x)�]]fo ≡ [[�∀x . p(0) ⊃ q(x)�]]fo,

which reduces to

(p(0) ⊃ ∀x . q(x)) ≡ (∀x . p(0) ⊃ q(x))

as desired. �

Example 8. Let R be the rule given in Example 5 expressed as a rule in a lan-
guage of Chiron. Then M would be the formula

∀ e1 : Ete, e2 : Ete, e3 : Efo .

(is-var(e2) ∧ free-for(e1, e2, e3) ∧ [[e2]]te = [[e1]]te ∧ [[e3]]fo) ⊃ [[π(e1, e2, e3)]]fo
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which says that, for all expressions E1, E2, E3, if E1 is a term t, E2 is a variable
x, and E3 is a formula A such that t is free for x in A, then x = t ∧ A implies
the result of applying the algorithm π̂ to (t, x, A). Notice that the syntactic side
condition of the formula schema in Example 5 (that says t is free for x in A) has
been directly incorporated into M . �

Example 9. Let R be the rule given in Example 6 expressed as a rule in a lan-
guage of Chiron. Assume that real → real is the type

(Λ x : real . real)

and deriv is the operator

(derivative :: real → real, real → real).

Also let (a ↓ α) mean that the term a is defined with a value in the denotation
of the type α. Then M would be the formula

∀ e : Ete . ([[e]]te ↓ real → real) ⊃ deriv([[e]]te) = [[π(e)]]te

which says that, for all expressions E, if E is a term t that denotes a function
f that maps real numbers to real numbers, then the result of applying the
algorithm π̂ to (t) is a term that denotes the derivative of f . �

See [9] for further details, discussion, examples, and references concerning
Chiron.

4 An Example

In this section we will sketch the development of a nontrivial biform theory. We
will start with a theory T = (L, Ω) of (higher-order) Peano arithmetic where:

– L contains operators nat, 0, S that represent the type of natural numbers,
zero, and the successor function, respectively.

– Γ contains three formulas that express that 0 does not succeed another nat-
ural number, that the successor function is injective, and the full induction
principle over all sets of natural numbers.

The next step is to extend T to T ′ = (L′, Ω′) by introducing defined op-
erators 1, +, ∗ for one, the addition function, and the multiplication function,
respectively. 1 is defined as the successor of 0. + and ∗ are defined recursively.

The last step is to extend T ′ to T ′′ = (L′′, Ω′′) by introducing the machinery to
add and multiply binary numerals. Define a (binary) numeral to be an expression
(a1, . . . , an) where n ≥ 1 and ai is 0 or 1 for each i with 1 ≤ i ≤ n. As defined,
a numeral is an improper expression, and thus it denotes nothing. However, if
n is a numeral, then �n� is a proper expression that denotes the construction of
n. We can introduce defined operators num, num-val that represent the type of
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numerals and a function that maps the type of numerals onto the type of natural
numbers.

We can then define a rule R = (Π, M) for numeral addition where Π =
(add, add-alg) is a binary transformer and M is the formula

∀m, n : num .

num-val(m) + num-val(n) = num-val((add :: num, num, num)(m, n)).

This formula says that the sum of the values of two numerals equals the value
of the output of the algorithm add-alg when given the two numerals as input.
The formula also says implicitly that

(add :: num, num, num)(m, n)

is defined iff m and n both denote numerals. The algorithm add-alg could be
implemented, for example, as a lambda-expression of L′′ or as a program in
some convenient programming language. We can introduce a rule for numeral
multiplication in a similar way.

5 Conclusion

The notion of a biform theory enables axiomatic mathematics and algorithmic
mathematics to be expressed together in one theory. A biform theory consists of
a set of axioms that includes both formulas and rules. A rule is an expression-
manipulating algorithm called a transformer coupled with a meaning formula
that defines its semantics. A biform theory can be viewed both as an axiomatic
theory and as an algorithmic theory. The algorithmic theory provides the deduc-
tion and computation rules for reasoning within the theory, while the axiomatic
theory provides the context in which to understand the reasoning that is done via
these rules. The axioms of a biform theory are the implicit background assump-
tions of the theory that define what formulas and rules are logical consequences
of the theory.

Since transformers are algorithms that manipulate expressions, the meaning
formulas of biform theory rules can only be directly formalized in a logic with
support for reasoning about the syntax of expressions. Traditional logics do not
offer this kind of support. Chiron is a general-purpose logic with high theoret-
ical and practical expressivity and a facility for reasoning about the syntax of
expressions. As a result, it is exceptionally well-suited for formalizing biform the-
ories. Meaning formulas—that would usually be expressed as formula schemas
in tradition logics—can be directly expressed in Chiron.

Biform theories can also be formalized in other logics that provide a means to
reason about syntax. Many approaches for formalizing the syntax of expressions
have been proposed starting with K. Gödel’s famous arithmetization of syntax
via Gödel numbering [12]. Two good surveys of this research area are [14] and
the extended version of [17].
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A great deal of research has been directed to the problem of how to integrate
computer theorem proving and computer algebra. Much of this research has
been done in connection with the Calculemus Project [3] or has been presented
at the Calculemus symposia that began in 1996. Two research initiatives that are
closely related to biform theories and the MathScheme project are the Theorema
project [2] at the RISC Research Institute for Symbolic Computation [18] and
the work by H. Barendregt and F. Wiedijk on the foundations of computerized
mathematics [1].

The development and application of Chiron is a long-range research project
composed of the following four tasks:

1. The design of Chiron.
2. The design of a proof system for Chiron.
3. The development of an implementation of Chiron and its proof system.
4. The development of a series of applications to demonstrate Chiron’s reach

and level of effectiveness.

The first task is largely completed [7,9]. The last three tasks have hardly been
started. This paper begins the fourth task.
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Abstract. We address the problem of automatic synthesis of decision
procedures. Our synthesis mechanism consists of several stages and sub-
mechanisms and is well-suited to the proof-planning paradigm. The sys-
tem (adeptus), that we present in this paper, synthesised a decision
procedure for ground arithmetic completely automatically and it used
some specific method generators in generating a decision procedure for
linear arithmetic, in only a few seconds of cpu time. We believe that
this approach can lead to automated assistance in constructing decision
procedures and to more reliable implementations of decision procedures.

1 Introduction

Decision procedures are often vital in theorem proving [2,7]. In order to have
decision procedures usable in a theorem prover, it is necessary to have them
implemented not only efficiently, but also flexibly. It is often very important to
have decision procedures for new, user-defined theories. Also, the implementation
of decision procedures should be such that it can be verified in some formal way.
For all these reasons, it would be fruitful if the process (or, at least, all its routine
steps) of implementing decision procedures can be automated. It would help in
avoiding human mistakes in implementing decision procedures.

In this paper we follow ideas from the programme on proof plans for nor-
malisations and for automatic generation of decision procedures from [4]. As
discussed there, many steps of many decision procedures can be described via
sets of rewrite rules (so, object level proofs could also be relatively easily de-
rived). Following and extending the ideas from [4], we have developed a system
adeptus (coming from Assembly of DEcision Procedures via TransmUtation
and Synthesis) capable of automatically synthesising normalisation procedures
and decision procedures.1 All the methods that adeptus generates are built in
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the spirit of the proof planning paradigm (and are implemented in prolog).
For some theories, the approach gives not only automatically generated decision
procedures, but also — by generating structured procedures consisting of simple
methods — a higher-level understanding of syntactical transformations within
the theory. Also, thanks to their modular architecture, generated procedures can
be easily modified to slightly changed circumstances. We believe that this ap-
proach can be helpful in providing an easier and more reliable implementation of
decision procedures. In this paper we evaluate our techniques on ground arith-
metic and linear arithmetic (over rationals). adeptus synthesised the decision
procedures for ground arithmetic in around 3 seconds, and a decision procedure
for (quantified) linear arithmetic in around 5 seconds of cpu time.

2 Preliminaries

Decision procedure. A theory T is decidable if there is an algorithm, which we
call a decision procedure, such that for an input T -sentence f , it returns yes
if and only if T � f (i.e., if f is a theorem of T ), and returns no otherwise).

Ground and linear arithmetic. Ground arithmetic is a fragment of arithmetic
that does not involve variables. Linear arithmetic is a fragment of arithmetic
that involves only addition (nx is treated as x + · · · + x, where x appears
n times). For both these theories, we assume that variables can range over
rational numbers. The Fourier/Motzkin procedure [9] is one of the decision
procedures for linear arithmetic.

Backus-Naur form. For describing syntactical classes, we use Backus-Naur form
— bnf (equivalent to context-free grammars). We assume that each bnf

specification has attached its top nonterminal. The language of a bnf is
a set of all expressions that can be derived from the top nonterminal. For
representing some infinite syntactical classes, for convenience, we use some
meta-level conditions. We define the relation ec (element of class) as follows:
ec(b, e, c) holds iff e can be derived from c w.r.t. the bnf specification b.

Rewrite rules. Unconditional rewrite rules are of the form: RuleName : l −→ r.
Conditional rewrite rules are of the form: RuleName : l −→ r if p1, p2, . . . ,
pn, where p1, p2, . . ., pn are literals. These rewrite rules may be used modulo
the underlying theory T (e.g., the rule n1x + n2x −→ nx if n = n1 + n2

may be used modulo linear arithmetic). For a rule RuleName : l −→
r if p1, p2, . . . , pn, we say that it is sound w.r.t. T if for arbitrary T -formula
Φ and arbitrary substitution ϕ it holds that T � Φ if T , p1ϕ, p2ϕ, . . . ,
pnϕ � Φ[lϕ �→ rϕ], and we say that it is complete w.r.t. T if for arbi-
trary T -formula and arbitrary substitution ϕ it holds that T � Φ only if
T , p1ϕ, p2ϕ, . . . , pnϕ � Φ[lϕ �→ rϕ].2

Proof planning and methods. Proof-planning is a technique for guiding the
search for a proof in automated theorem proving. To prove a conjecture,
within a proof-planning system, a method constructs the proof plan and

2 Note that T does not necessarily contain the theory of equality, so we define sound-
ness and completeness of the rules this way.
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this plan is then used to guide the construction of the proof itself [3]. These
plans are made up of tactics, which represent common patterns of reasoning.
A method is a specification of a tactic. A method has several slots: a name,
input, preconditions, transformation, output, postconditions, and the name
of the attached tactic. A method cannot be applied if its preconditions are
not met. Also, with the transformation performed and the output computed,
the postconditions are checked and the method application fails if they fail.3

3 Proposed Programme

Our programme (slightly modified from the first version [4]) for automated syn-
thesis of normalisation methods and decision procedures has several parts:

– Given a syntactical class, a set of rewrite rules, and a kind of transformation,
select (if it is possible) a subset of rewrite rules that is sufficient to transform
any member of the input syntactical class in the required way. The output
class should also be generated automatically. We call a method generator an
algorithm capable of generating a method that transforms members of the
input class to members of the output class.

– There are different kinds of methods, e.g., one for removing some function
symbol, one for stratification, one for thinning etc. (see further text and [4]
for explanation of these terms); for each of them, there is a method generator.

– Given several generated methods, it should be possible to combine them
(automatically) into a compound method or, sometimes, into a decision pro-
cedure for some theory;

– Methods (and compound methods) should be designed in such a way that
their soundness, completeness, and termination can be easily proved;

– Since some transformations (required for some procedures) are very complex,
building methods may require human interaction and assistance.

Example 1. From any formula derivable from f w.r.t. the following bnf:
f ::= af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f |(∃var : sort)f |(∀var : sort)f

(where af is another nonterminal, describing atomic formulae) the symbol ⇔ can
be removed by exhaustively using the rewrite rule f1 ⇔ f2 −→ (f1 ⇒ f2)∧(f2 ⇒
f1) and the resulting formula can be derived from f w.r.t. the following bnf:

f ::= af |¬f |f ∨ f |f ∧ f |f ⇒ f |(∃var : sort)f |(∀var : sort)f .

Following the above programme, we implemented our system adeptus capable
of generating code for real-world decision procedures. We have implemented
several method generators. They take a given bnf, transform it into another one,
and build a method that can transform any formula that belongs to the first bnf

into a formula that belongs to the second bnf. On the set of all these generators,
we can perform a (heuristically guided) search for a sequence of methods which

3 Alteratively, instead of (active) postconditions, methods can have (passive) effects
— conditions that are guaranteed to be true when the method succeeds.
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goes from a starting bnf to a trivial bnf (consisting of only � and ⊥). If the
final syntactical class is equal to {⊥,�}, then the whole of the sequence yields
a decision procedure for the underlying theory (under some assumptions about
available rewrite rules). If such a method can be built, soundness, termination,
and completeness can be easily proved. Apart from these method generators,
we also use special-purpose method generators. For simplicity, in the rest of the
paper we assume that, in formulae being transformed, variables are standardised
apart, i.e., there are no two quantifiers with the same variable symbol.

4 Method Generators and Generated Methods

Normalisation Method Generators. Normalisation methods are methods
based on exhaustive application of rewrite rules. Each normalisation method
has the following general form:

name: methodname;
input: f ;

preconditions: ec(b, f, top nonterminal) (where b is the input bnf);
transformation: transforms f to f ′ by exhaustive application of the set of

rewrite rules (applying to positions that correspond to the
attached language constructs);

output: f ′;
postconditions: ec(b′, f ′, top nonterminal) (where b′ is the output bnf).

We have implemented generators for several kinds of methods:

Remove is a normalisation method used to eliminate a certain function symbol,
predicate symbol, logical connective, or a quantifier from a formula. The
method uses sets of appropriate rewrite rules and applies them exhaustively
to the current formula until no occurrences of the specific symbol remain.
For instance, as shown in Example 1, the given bnf specification can be
transformed to the corresponding bnf specification without the symbol ⇔.

Stratify is a normalisation method used to stratify one syntactical class into two
syntactical classes containing some predicate or function symbols, logical
connectives or quantifiers. For instance, a stratify method for moving dis-
junctions beneath conjunctions can be constructed if the following rewrite
rules are available: st_conj_disj1: f1 ∧ (f2 ∨ f3) −→ (f1 ∧ f2) ∨ (f1 ∧ f3),
st_conj_disj2: (f2 ∨ f3) ∧ f1 −→ (f2 ∧ f1) ∨ (f3 ∧ f1).

Thin is a normalisation method that eliminates multiple occurrences of a unary
logical connective or a unary function symbol. For instance, we can use the
rule ¬¬f −→ f in order to transform each formula derivable from f ::=
af |¬f to a formula derivable from f ::= af |¬af .

Absorb is a normalisation method that can eliminate some recursion rules. For
instance, we can use the rule rm_mult: c1 · c2 −→ c3 if c3 = c1 · c2 in order
to transform each term derivable from t ::= t · rc|rc (where the nonterminal
rc denotes rational constants) to a term derivable from t ::= rc.

Left-assoc is one of the normalisation methods for reorganising within a class. If
a syntactical class contains only one function symbol or a connective and if
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that symbol is both binary and associative, then members of this class can be
put into left associative form. For instance, we will need the left association
of addition and the left association of conjunction.

A normalisation method generator is a procedure with the following input: (i)
a bnf b for the input expressions; (ii) a set of rewrite rules R; (iii) a kind of
the required method (e.g., remove). It generates a method M and a bnf b′

(for the output expressions).4 By applying the rules from R, M transforms any
expression derivable from b to an expression derivable from b′.

Example 2. Consider the bnf: f ::= h(a)|h(b)|g1(a)|g2(b) where a and b are non-
terminals, and the following rewrite rules: R1 : h(x) −→ g1(x), R2 : h(x) −→
g2(x). These rules are sufficient for eliminating the symbol h and for transform-
ing the above bnf into: f ::= g1(a)|g2(b). However, it cannot be reached by
arbitrary use of exhaustive applications of the given rewrite rules: R1 should be
applied only to h(a), and R2 only to h(b). The lesson is that we have to take care
about which rule we use for specific language constructs. This sort of information
has to be built into the method we want to construct.

A normalisation method generator works, basically, as follows: first it tries to
eliminate non-recursive nonterminals in the input bnf, then searches for “prob-
lematic” bnf rules and generates the output bnf set, then, a generic algorithm
for searching over available rewrite rules is invoked and it checks if all “problem-
atic” language constructs can be rewritten in such a way that any input formula,
when rewritten, is derivable from the top nonterminal of the output bnf. Also,
this search mechanism attaches rewrite rules to particular language constructs.
If there are no required rewrite rules, a method generator reports it, so the user
could try to provide missing rules (in a planned, advanced version, which is not
part of the work presented in this paper, the method generator would speculate
the remaining necessary rules and/or try to redefine/relax the output class).

Example 3. The remove method generator can generate the method for removing
the symbol ¬ from formula derivable from f w.r.t. the following bnf:

f ::= f ∨ f |f ∧ f |¬⊥|¬�|¬t < t|¬t = t|⊥|�|t < t|t = t|
with the following rewrite rules attached to particular language constructs:
rm_bottom: ¬⊥ −→ � attached to ¬⊥
rm_top:, ¬� −→ ⊥ attached to ¬�
rm_neg_less: ¬(t1 < t2) −→ (t2 < t1) ∨ (t1 = t2) attached to ¬t < t
rm_neg_eq: ¬(t1 = t2) −→ (t1 < t2) ∨ (t2 < t1) attached to ¬t = t

The output bnf is: f ::= f ∨ f |f ∧ f |⊥|�|t < t|t = t| and, by the generated
remove method, the formula ¬(3 < 2) ∧ ¬(1 = 2) will be transformed to (2 <
3 ∨ 3 = 2) ∧ (1 < 2 ∨ 2 < 1).

Special-Purpose Method Generators. The first one of the following special-
purpose generators can be used for a quantifier elimination procedure for any the-
ory, while the remaining three are specific for linear arithmetic. Note, however,
4 In our system, the tactics are not implemented yet. So, our procedures produce

meta-level proof plans, not the object level proofs.
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that it is essential to have these generators (although they are theory-specific):
they can be used in an automatic search process and generate the required meth-
ods with the given preconditions (which are not known in advance).

Method Generator for Adjusting the Innermost Quantifier. It generates a
method that transforms a formula in prenex normal form in the follow-
ing way: if its innermost quantifier is existential, then keep it unchanged; if
its innermost quantifier is universal, then rewrite the formula (Qx1)(Qx2)
. . . (Qxn)(∀x)f to (Qx1)(Qx2) . . . (Qxn)¬(∃x)¬f by using the following
rewrite rule: rm_univ: (∀x)f −→ ¬(∃x)¬f . The motive of this method
is to deal only with elimination of existential quantifiers.

One-side Method Generator. It generates a method that transforms all literals
in such a way that each of them has 0 as its second argument. For instance,
for symbols <, >, ≤, =, ≥, = as parameters, after applying the generated
one-side method, each literal will have one of the following forms: t < 0,
t > 0, t ≤ 0, t = 0, t ≥ 0, t = 0.

Method Generator for Isolating a Variable. It generates a method that isolates
a distinguished variable x in all literals. After applying that method, each of
the literals either does not involve x or has one of the forms: αx = β, x = β,
αx < β, x < β (where α and β have no occurrences of x).

Method Generator for Removing a Variable. The cross multiply and add step is
the essential step of the Fourier/Motzkin’s procedure [9]. It is applied for
elimination of x from ∃xF (x), where F is in disjunctive normal form and each
of its literals either does not involve x or has one of the forms: αx = β, x = β,
αx < β, x < β (where α and β have no occurrences of x). After performing
this step, x does not occur in the current formula and so the corresponding
quantifier can be deleted. It is important to have this generator (instead
of a single method) — it generates required methods with concrete specific
preconditions and postconditions, which is vital for combining with other
concrete methods, and for automatic search process.

Properties of Generated Methods. A normalisation method links two sets
of formulae. From the syntactical point of view, each formula f1 derivable from
the top nonterminal of the input bnf should be transformed (in a finite number
of steps) into a formula f2 derivable from the top nonterminal of the output bnf.
From the deductive point of view, it should hold that T � f1 if (and only if)
T � f2. If the “if” condition holds, then the method is sound, and if the “only
if” condition holds then the method is complete (w.r.t. T ).

Termination. For each generated method it must be shown that it is terminating
(by considering properties of the rewrite rules used5). For some sorts of
methods, their termination is guaranteed by the way they are generated.

Soundness. We distinguish soundness of a method w.r.t. syntactical restrictions
and soundness of a method w.r.t. the underlying theory T :

5 Note that these sets of rewrite rules are not always confluent. Moreover, for certain
tasks, such as, for instance, transforming a formula into disjunctive normal form,
there is no confluent and terminating rewrite system [10].
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– If a method transforms one formula into another one, then it is ensured
by the method’s postconditions that the second one does meet the re-
quired syntactical restrictions (given by the method specification), so the
method is sound w.r.t. syntactical restrictions.6

– All available rewrite rules (all of them correspond to the underlying
theory T ) are assumed to be sound. Thus, since a method is (usually)
based on exhaustive application of some (normally sound) rewrite rules,
it is trivially sound w.r.t. T .

Completeness. We distinguish completeness of a method w.r.t. syntactical re-
strictions and w.r.t. the underlying theory T :

– It is not a priori guaranteed that a method can transform any input
formula (which meets the preconditions) into some other formula (that
belongs to the output class), i.e., it is not guaranteed that the method
is complete w.r.t. syntactical restrictions. Namely, a method maybe uses
some conditional rewrite rules (which cannot be applied to all input for-
mulae). If a method uses only unconditional rewrite rules or conditional
rewrite rules which cover all possible cases, then it can transform any
input formula into a formula belonging to the output class.

– Completeness of a method w.r.t. T relies on the completeness of the
rewrite rules used. If a method can transform any input formula into a
formula belonging to the output class and if all the rewrite rules it uses
are complete, then the method is complete w.r.t. T .

5 Search Engine for Synthesising Compound Methods

Given method generators, a bnf description of a theory T , and a set of available
rewrite rules, a user can try to combine different generated methods and trans-
form the initial bnf step by step, searching for some goal bnf. Also, an automatic
search for compound methods or a decision procedure for T can be performed.
The goal of this process is to generate a sequence of methods such that: (i) the
output bnf of a non-last method is the input bnf of the next method in the
sequence; (ii) the output bnf of the last method in the sequence is a goal bnf,
for instance, a trivial bnf — consisting only of rules with � and ⊥ for the top
nonterminal. Of course, this sequence can have more methods that are different
instances of the same kind of methods, or even the very same method more than
once. In each step, our search procedure tries all available method generators,
6 Conditional rules are the reason for using active postconditions in methods (instead

of passive effects). For instance, for bnf f ::= f ∧ f |n = n|n < n|�|⊥, the rewrite
rules rm ls1: n1 < n2 −→ � if number(n1), number(n2), n1 < n2 and rm ls2:
n1 < n2 −→ ⊥ if number(n1), number(n2), n1 > n2 eliminate the symbol <. The
method generator would take both these rules for building a remove method for <,
but (since it works only in syntactical manner) it would not check if the conditions
for rm ls1 and rm ls2 cover all cases, i.e., if the generated method can transform
any input formula. That is why the methods have (active) postconditions that check
if the input formula is really rewritten so the result belongs to the output class.
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with all possible parameters (based on the underlying language). In order to
ensure termination, the search procedure tries to find a sequence of methods
that consists of subsequences, such that each of them is of length less than or
equal to a fixed value M , and such that the last bnfs of the subsequences are of
strictly decreasing size. So, in any generated procedure there might be some bnf

size increasing steps (for instance, with introducing new symbols in the current
bnf), but the whole of the generated procedure will be size decreasing. The size
of bnf specification is a heuristic measure and we define it to be the sum of sizes
of all its rules; the size of a rule c ::= c′ is equal to 100 ·nc(c′)+10 ·n1(c′)+n2(c′),
where nc denotes the number of occurrences of c in c′, n1 the number of occur-
rences of all other nonterminals in c′, and n2 the number of all other symbols in
c′. Defined this way, the measure forces the engine to try to get rid of recursive
nonterminals and then of the nonterminals whose specifications involve some
other nonterminals. The trivial, goal bnf (consisting of only f ::= �|⊥) has the
size 2. If the current sequence cannot be continued, the engine backtracks and
tries to find alternatives.

Example 4. The size of the following bnf f ::= af |¬f , af ::= �|⊥ is 113 (10
for f ::= af , 1+100 for f ::= ¬f , 1 for af ::= �, 1 for af ::= ⊥).

The size of the following bnf specification (for ground arithmetic):
f ::= af |¬f |f ∨ f |f ∧ f |f ⇒ f |f ⇔ f

af ::= �|⊥|t = t|t < t|t > t|t ≤ t|t ≥ t|t = t
t ::= rc| − t|t · t|t + t

is 1556 (af denotes atomic formulae, t denotes terms, and rc denotes rational
constants). The size of bnf for the full linear arithmetic is 2233.

Given a finite number of method generators and a finite number of rewrite
rules, at each step a finite number of methods can be generated (there is also a
finite number of possible parameters). Thus, since the algorithm produces subse-
quences (of maximal length M) of decreasing sizes (that are natural numbers) of
corresponding bnf specifications, the given algorithm terminates. If method gen-
erators can generate all methods necessary for building the required compound
method, then (thanks to backtracking) the given algorithm can build one such
compound method (for M large enough). If we iterate the given algorithm (for
M = 1, 2, 3, . . .), then it will eventually build the required compound method,
so this iterated algorithm is complete. However, we can also use it only with
particular values for M (then the procedure is not complete, but it gives better
results if it used only for an appropriate value for M).

The ordering of method generators is not relevant for termination and correct-
ness of the search algorithm, but it is important for its efficiency. We used the
following ordering (based on empirical tests, simpler than a potential theoretical
analysis, specific for each case): remove, thin, absorb, stratify, left_assoc.

When normalisation methods themselves cannot build a decision procedure,
we use special-purpose method generators and the basic search engine in a more
complex way. The search for a decision procedure based on quantifier elimination
is performed in three stages, by the following compound search engine:
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– the first stage is reaching a bnf for which the method for adjusting the
innermost quantifier is applicable;

– the second stage produces a sequence of methods (that will form a loop) for
variable elimination; the output bnf of this sequence of methods has to be
a subset of its input bnf;

– the third stage is for final simplifications, it starts with the output bnf of
the first stage, but with all rules involving variables and quantifiers deleted;
its goal bnf specification is the trivial one (i.e., it consists only of � and ⊥).

For each of these stages we use the basic search engine and we use all method
generators with higher priority given to the special-purpose method generators.

Properties of Compound Methods. A set of generated methods for some
underlying theory T can be combined (by a human, or automatically) into a
compound method (for that theory). Compound methods (in this context) can
use primitive methods in a sequence or in a loop (but not conditional branch-
ing). The preconditions of a compound method are the preconditions of the first
method, and the postconditions are the postconditions of the last method used.7

Termination. If a compound method is a sequence of terminating methods, then
it is (trivially) terminating. If it has a loop, a deeper argument is required.

Soundness. Since it relies on the soundness of the used primitive methods, every
compound method is also sound (both w.r.t. syntactical restrictions and
w.r.t. the underlying theory T ). Meeting the syntactical restrictions of the
compound method is also ensured by its postconditions.

Completeness. If all the used methods are complete and if the compound method
is terminating, then it is (trivially) complete. More precisely, if a compound
method (i) is terminating; (ii) uses only (primitive) methods which never fail
(i.e., the methods which transform any input formula to a formula belonging
to the output class) and which use only complete rewrite rules, then that
compound method is complete (w.r.t. T ).

Based on the above considerations, we can make a crucial observation: if a com-
pound method for some theory T has an input bnf corresponding to the whole
of T , a trivial output bnf consisting only of � and ⊥, and if it is terminating,
sound, and complete (w.r.t. T )8, then it is a decision procedure for T . This way,
we can, in some cases, trivially get a proof that some (automatically generated)
compound method is a decision procedure for some theory.

6 Evaluation

We ran the basic search engine, on the bnf specification for ground arithmetic
given in Example 4, with M = 3, with the described method generators, and
7 This way of constructing the preconditions and postconditions of a compound

method is not adequate in general but suffices for the examples we were working
on (recall that in compound methods that our system generates, the output bnf of
a method is always the input bnf of the next method in the sequence).

8 Soundness and completeness properties rely on properties of the rewrite rules used.
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with 59 relevant rewrite rules available. We set the goal bnf specification to be
the trivial one (f ::= �|⊥), thus aiming at synthesising a decision procedures
for ground arithmetic. The search algorithm took 2.91 seconds of cpu time9,
during the search there were 48 methods successfully generated and there are
22 of them in the final sequence. The search algorithm produced the sequence
of methods DP_GA with the following “overview” (in bracket the sizes of the
output bnfs are given): remove ⇔ (1345), remove ⇒ (1144), remove ≤ (1123),
remove ≥ (1102), remove = (1081), remove > (1060), remove − (959), stratify
[∧,∨] (969), thin ¬ (906), remove ¬ (858), stratify [∨] (868), stratify [+] (878),
left assoc ∨ (788), left assoc + (698), left assoc ∗ (608), absorb ∗ (487), absorb
+ (366), remove < (345), remove = (324), left assoc ∧ (327), remove ∧ (206),
remove ∨ (2).

Example 5. The method stratify [+] from the above list was generated for the
following input bnf:

f ::= f1|f ∨ f
f1 ::= f1 ∧ f1|⊥|�|t < t|t = t|
t ::= t · t|t + t|rc

with the following rewrite rules attached to particular language constructs (deriv-
able from t):
st_mult_plus1: t1 · (t2 + t3) −→ (t1 · t2) + (t1 · t3) attached to t · (t + t)
st_mult_plus2: (t2 + t3) · t1 −→ (t2 · t1) + (t3 · t1) attached to (t + t) · t

The output bnf is:
f ::= f1|f ∨ f

f1 ::= f1 ∧ f1|⊥|�|t < t|t = t|
t ::= t1|t + t

t1 ::= t1 · t1|rc
By this method, the formula 2·(1+3) < 3 will be transformed to 2·1+2·3 < 3.

Theorem 1. The procedure DP_GA for ground arithmetic is terminating, sound
and complete, i.e., it is a decision procedure for ground arithmetic.

Proof sketch. The procedure DP_GA is sound and terminating, as all generated
methods are sound and terminating and there is no loop. We still don’t claim
that it is complete as there are some conditional rewrite rules used. For instance,
in the step absorb + of DP GA, the conditional rule reduce_plus: t1 + t2 ⇒
t3, if t3 = t1 + t2 is used, but it is still not shown that its condition covers
all possible cases. The user can show this by proving: (∀c1 : rational)(∀c2 :
rational)(∃c3 : rational)(c3 = c1 + c2). It is easy to prove that such conjectures
are theorems of arithmetic. Moreover, some of them can be proved by the decision
procedure DP_LA for linear arithmetic (which we also automatically generated,
see the subsequent text). All this leads us to conclude that the procedure DP_GA
is correct.

Example 6. This example shows the formulae produced by the 22 subsequent
methods of the procedure DP GA applied to the formula ¬(7 ≤ 5) ⇒ ¬(2·(1+3) ≥
3) (it is assumed that ∧ has higher priority than ∨).
9 The system is implemented in swi Prolog and tested on a 512Mb PC Celeron 2.4Ghz.
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remove ⇔ ¬(7 ≤ 5) ⇒ ¬(2·(1 + 3) ≥ 3)
remove ⇒ ¬(¬(7 ≤ 5)) ∨ ¬(2·(1 + 3) ≥ 3)
remove ≤ ¬(¬(7 < 5 ∨ 7 = 5)) ∨ ¬(2·(1 + 3) ≥ 3)
remove ≥ ¬(¬(7 < 5 ∨ 7 = 5)) ∨ ¬(3 < 2·(1 + 3) ∨ 2·(1 + 3) = 3)
remove = ¬(¬(7 < 5 ∨ 7 = 5)) ∨ ¬(3 < 2·(1 + 3) ∨ 2·(1 + 3) = 3)
remove > ¬(¬(7 < 5 ∨ 7 = 5)) ∨ ¬(3 < 2·(1 + 3) ∨ 2·(1 + 3) = 3)
remove −, ¬(¬(7 < 5 ∨ 7 = 5)) ∨ ¬(3 < 2·(1 + 3) ∨ 2·(1 + 3) = 3)
stratify [∧,∨] (¬(¬7 < 5) ∨ ¬(¬7 = 5)) ∨ ¬3 < 2·(1 + 3) ∧ ¬2·(1 + 3) = 3
thin ¬ (7 < 5 ∨ 7 = 5) ∨ ¬3 < 2·(1 + 3) ∧ ¬2·(1 + 3) = 3
remove ¬ (7 < 5 ∨ 7 = 5) ∨ (2·(1 + 3) < 3 ∨ 3 = 2·(1 + 3)) ∧ 2·(1 + 3) < 3 ∨ 3 < 2·(1 + 3)
stratify [∨] (7 < 5 ∨ 7 = 5) ∨ ((2·(1 + 3) < 3 ∧ 2·(1 + 3) < 3) ∨ 3 = 2·(1 + 3) ∧ 2·(1 + 3) < 3)∨

(2·(1 + 3) < 3 ∧ 3 < 2·(1 + 3)) ∨ 3 = 2·(1 + 3) ∧ 3 < 2·(1 + 3)
stratify [+] (7 < 5 ∨ 7 = 5) ∨ ((2·1 + 2·3 < 3 ∧ 2·1 + 2·3 < 3) ∨ 3 = 2·1 + 2·3 ∧ 2·1 + 2·3 < 3)∨

(2·1 + 2·3 < 3 ∧ 3 < 2·1 + 2·3) ∨ 3 = 2·1 + 2·3 ∧ 3 < 2·1 + 2·3
left assoc ∨ ((((7 < 5 ∨ 7 = 5) ∨ 2·1 + 2·3 < 3 ∧ 2·1 + 2·3 < 3) ∨ 3 = 2·1 + 2·3 ∧ 2·1 + 2·3 < 3)∨

2·1 + 2·3 < 3 ∧ 3 < 2·1 + 2·3) ∨ 3 = 2·1 + 2·3 ∧ 3 < 2·1 + 2·3
left assoc + ((((7 < 5 ∨ 7 = 5) ∨ 2·1 + 2·3 < 3 ∧ 2·1 + 2·3 < 3) ∨ 3 = 2·1 + 2·3 ∧ 2·1 + 2·3 < 3)∨

2·1 + 2·3 < 3 ∧ 3 < 2·1 + 2·3) ∨ 3 = 2·1 + 2·3 ∧ 3 < 2·1 + 2·3
left assoc · ((((7 < 5 ∨ 7 = 5) ∨ 2·1 + 2·3 < 3 ∧ 2·1 + 2·3 < 3) ∨ 3 = 2·1 + 2·3 ∧ 2·1 + 2·3 < 3)∨

2·1 + 2·3 < 3 ∧ 3 < 2·1 + 2·3) ∨ 3 = 2·1 + 2·3 ∧ 3 < 2·1 + 2·3
absorb · ((((7 < 5 ∨ 7 = 5) ∨ 2 + 6 < 3 ∧ 2 + 6 < 3) ∨ 3 = 2 + 6 ∧ 2 + 6 < 3)∨

2 + 6 < 3 ∧ 3 < 2 + 6) ∨ 3 = 2 + 6 ∧ 3 < 2 + 6
absorb + ((((7 < 5 ∨ 7 = 5) ∨ 8 < 3 ∧ 8 < 3) ∨ 3 = 8 ∧ 8 < 3) ∨ 8 < 3 ∧ 3 < 8) ∨ 3 = 8 ∧ 3 < 8
remove < ((((⊥∨ 7 = 5) ∨ ⊥ ∧ ⊥) ∨ 3 = 8 ∧ ⊥) ∨⊥ ∧ �) ∨ 3 = 8 ∧ �
remove = ((((⊥∨ ⊥) ∨ ⊥ ∧ ⊥) ∨ ⊥ ∧⊥) ∨ ⊥ ∧ �) ∨ ⊥ ∧ �
left assoc ∧ ((((⊥∨ ⊥) ∨ ⊥ ∧ ⊥) ∨ ⊥ ∧⊥) ∨ ⊥ ∧ �) ∨ ⊥ ∧ �
remove ∧ ((((⊥∨ ⊥) ∨ ⊥) ∨ ⊥) ∨ ⊥) ∨⊥
remove ∨ ⊥

We applied the compound search engine on the bnf description of the full linear
arithmetic, with M = 3 for the first and the third stage, with M = 5 for the
second stage10, with all the described method generators, and with 71 relevant
rewrite rules available. The search algorithm took 4.80 seconds of cpu time and
during the search there were 89 methods successfully generated, while there are
51 of them in the final sequence, yielding a decision procedure DP_LA with:11

– 9 methods in the first stage: remove ⇔, remove ⇒, remove ≤, remove ≥,
remove =, remove >, remove -, remove -, stratify [∀, ∃],

– 22 methods in the quantifier elimination loop: adjust innermost x0, stratify
[∧,∨], thin ¬, remove ¬, one side [0, [<, >,≤, =,≥, =]], stratify [∨], stratify
[+], stratify [+], left assoc ∨, left assoc ∧, stratify [<, =], remove ∧, left assoc
+, left assoc +, left assoc ·, absorb ·, absorb +, absorb ·, absorb +, isolate
[[x0, rc · x0], [<, >,≤, =,≥, =]], eliminate [[x0, rc · x0], [<, >,≤, =,≥, =]],

– 20 methods for final simplifications: stratify [∧,∨], thin ¬, remove ¬, stratify
[∨], stratify [+], left assoc ∨, stratify [+], left assoc +, left assoc +, left assoc
·, absorb · absorb +, absorb ·, absorb +, remove <, remove =, left assoc ∧,
remove ∧, remove ∨, remove ¬

Theorem 2. The procedure DP_LA for linear arithmetic is terminating, sound
and complete, i.e., it is a decision procedure for linear arithmetic.

Proof sketch. Each of individual methods used in the generated procedure DP_LA
is terminating. Since each loop eliminates one variable and since there are a
finite number of variables in the input formula, the loop terminates. Hence,
10 For lower values of M the system failed to generate the required procedure.
11 Same methods (e.g., left assoc +) are applied to different language constructs.
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the procedure DP_LA is terminating. Since all methods in DP_LA use only sound
rewrite rules, all of them are sound, and hence, the procedure is sound. The
completeness relies not only on the completeness of the rewrite rules used, but
also on the coverage property for the methods that use conditional rewrite rules.
It can be shown (similarly as for DP_GA) that all required coverage properties
are fulfilled (moreover, some of the coverage properties can be proved by the
generated procedure itself, which is acceptable, as we know that the procedure
is sound). Therefore, in each method, either unconditional rules are used or
conditional rules that cover all possible cases. Hence, all methods always succeed
and are complete, and the procedure DP_LA is complete. All in all, the procedure
DP_LA terminates, it transforms an arbitrary input (linear arithmetic) formula
Φ into � or ⊥, while the output is � iff Φ is a theorem of linear arithmetic.

We don’t claim that the generated procedure DP_LA is the shortest or the most
efficient one. However, we doubt that a decision procedure for linear arithmetic
can be described in a much shorter way (see, for instance, the description from
[5]). This suggests that it is non-trivial for a human programmer to implement
this procedure without flaws and bugs, even when provided with the code for the
key step (cross multiply and add), because the most probable flaws are rather in
correctly combining all the remaining steps.

7 Related Work

Our approach is based on ideas from [4] and apart from that strong link, as we
are aware of, it can be considered basically original.

The work presented here is related to the Knuth-Bendix completion procedure
[8] and its variants in a sense that it performs automatic construction of decision
procedures. However, there are significant differences. While the completion pro-
cedure generates a confluent and terminating set of rewrite rules, and hence a way
how to reach a normal form, it does not give a description of the normal form. In
contrast, our system does not necessarily produce a decision procedure (or a nor-
malisation procedure) whenever the completion procedure, but when it does, it
also provides a finite description of the output (normalised) language. The com-
pletion procedure generates procedures that are based on exhaustive applications
of rewrite rules, while our system produces procedures that use subsets of rewrite
rules in stages and give structured proofs (easily understandable to a human). For
instance, our system can generate a procedure for constructing conjunctive normal
form, which cannot be done by the completion procedure and by a single rule set
(because, as said, there is no confluent and terminating rewrite system for trans-
forming a formula into disjunctive normal form [10]). We believe that it would be
worthwhile to combine our work with the Knuth-Bendix completion procedure in
the following way: the completion procedure can be used to find a confluent and
terminating set of rules and then adeptus can be used over them.

Our work is also related to work aimed at deriving decision procedures using
superposition-based inference system for clausal equational logic [1]. That ap-
proach is an alternative to the congruence closure algorithm and to the
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Knuth-Bendix completion procedure. It does not use subsets of rewrite rules
in stages, and it cannot handle some transformations required for decision pro-
cedures for fragments of arithmetic.

The presented approach is also related to work that performs automatic learn-
ing of proof methods [6]. The system LearnΩmatic learns proof methods (in-
cluding decision procedures) from proof traces obtained by brute force applica-
tion of available primitive methods. This approach (unlike ours) does not give
opportunities for simple proofs of termination or completeness of learnt methods.

8 Realm of the Approach and Further Automation

In the presented method generators, we take a method kind, input bnf, and a set
of rewrite rules, and use them to generate a required method (with some output
bnf). However, it would be fruitful if we could start with an input bnf and look
at bnfs and methods that can be obtained by subsets of the available rewrite
rules. It is interesting to consider if, for a given bnf and a set of (terminating)
rewrite rules, we can compute the output bnf. The answer for the general case
is negative, since the resulting set of expressions is not necessarily definable by
a bnf. Even if there is an algorithm that (given a bnf and a terminating set of
rewrite rules) constructs an output bnf whenever it is possible (this is subject of
our current research12), it would still not ensure further automation of our pro-
gramme in general case. Namely, if we want to synthesise a decision procedure,
we would generate a sequence of bnfs looking for a trivial one and we would have
to check if two bnfs give the same language, but that problem is undecidable.
Therefore, it is likely that we cannot have a complete such procedure for syn-
thesising decision procedures. On the other hand, we believe that the presented
system can work well in many practical situations. It is heuristic and its realm is
determined by the set of method generators available (so it is difficult to make
a formal characterisation of the realm). Basically, it can be used for producing
linear procedures, possibly with loops, but with no branching. In addition to
linear arithmetic, it can be also used for producing decision procedures for other
fragments of arithmetic (e.g., Presburger arithmetic) or for some normalisation
procedures for some inductively defined data structures. Procedures for frag-
ments of arithmetic are the most illustrative examples for the approach that we
have found so far. We are looking for additional such illustrative theories.

The problem of combining decision procedures is not addressed by our ap-
proach: a decision procedure for a combination theory can be synthesised only
if it as a whole can be described in terms of normalisation methods.

For future work we are planning the following lines of research: we will be
looking for other challenging domains (for instance, it would be interesting to
use our system in the context of smt (satisfiability modulo theory) solving, for
12 The algorithms for some special cases of this problem were presented by the authors

and Alan Smaill at the workshops CIAO 2003, CIAO 2004, and at Deduction and
Applications meeting at Dagstuhl, 2005., without publications. The work described
in this paper has not been presented or published before.
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producing modules for checking unsatisfiability for underlying theory); we will
try to extend the set of our method generators and search engines and will try
to further improve their efficiency; we will implement generators not only for
methods, but also for the corresponding tactics; we will try to automate the
process of checking if conditions in the rewrite rules used cover all possible cases
(we will try to do it whenever possible by using the “self-reflection” principle, as
discussed in the proofs of theorems 1 and 2); we will try to combine our system
with Knuth-Bendix completion procedure.

9 Conclusions

We presented a system (adeptus) for synthesising decision procedures, based
on ideas from [4]. adeptus consists of several method generators and mecha-
nisms for searching over them and combining them. We have implemented the
system and used it for automatically generating decision procedures (in pro-

log) for ground arithmetic and for linear arithmetic. These implementations
are correct (and the system makes easier proving correctness, completeness and
termination), which is not quite easy for a human programmer to achieve. The
approach generates procedures that are structured and easy to understand, and
also very modular, making it easy to adapt them to slightly changed circum-
stances (e.g., with new rules or terms introduced). We believe that our approach
can be used in other domains as well and can lead to automation of some routine
steps in different types of programming tasks.

References

1. Armando, A., Ranise, S., Rusinowitch, M.: Uniform Derivation of Decision Proce-
dures by Superposition. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS,
vol. 2142, Springer, Heidelberg (2001)

2. Boyer, R.S., Moore, J.S.: Integrating Decision Procedures into Heuristic Theorem
Provers: A Case Study of Linear Arithmetic. Machine Intelligence 11 (1988)

3. Bundy, A.: The Use of Explicit Plans to Guide Inductive Proofs. In: Lusk, R.,
Overbeek, R. (eds.) 9th Conference on Automated Deduction (1988)

4. Bundy, A.: The Use of Proof Plans for Normalization. In: Boyer, R.S. (ed.) Essays
in Honor of Woody Bledsoe (1991)

5. Hodes, L.: Solving Problems by Formula Manipulation in Logic and Linear In-
equalities. In: ProcIJCAI-71 (1971)

6. Jamnik, M., Kerber, M., Pollet, M., Benzmuller, C.: Automatic Learning of Proof
Methods in Proof Planning. CSRP-02-5, University of Birmingham (2002)
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Abstract. We present a prototype of a computer algebra system that
is built on top of a proof assistant, HOL Light. This architecture guar-
antees that one can be certain that the system will make no mistakes.
All expressions in the system will have precise semantics, and the proof
assistant will check the correctness of all simplifications according to this
semantics. The system actually proves each simplification performed by
the computer algebra system.

Although our system is built on top of a proof assistant, we designed
the user interface to be very close in spirit to the interface of systems like
Maple and Mathematica. The system, therefore, allows the user to easily
probe the underlying automation of the proof assistant for strengths
and weaknesses with respect to the automation of mainstream computer
algebra systems. The system that we present is a prototype, but can be
straightforwardly scaled up to a practical computer algebra system.

1 Introduction

Computer algebra systems do not always give correct answers. This happens
because those systems do not certify the operations performed. There can be
various reasons for errors in a CAS: assumptions can be lost, types of expressions
can be forgotten [2], the system might get confused between branches of ‘multi-
valued’ functions, and of course the algorithms of the system themselves may
contain implementation errors [23].

As an example of the kind of error that we are talking about here, consider the
following Maple [11] session that tries to compute

∫∞
0

e−(x−1)2√
x

dx numerically
in two different ways:

> int(exp(-(x-t)^2)/sqrt(x), x=0..infinity);
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> subs(t=1,%);
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> evalf(%);

0.4118623312

> evalf(int(exp(-(x-1)^2)/sqrt(x), x=0..infinity));

1.973732150

(We are showing Maple here, but all major computer algebra systems make
errors like this.)

To be sure that results are correct, one may use a proof assistant instead of
a CAS. But in that case even calculating simple things, like adding fractions or
calculating a derivative of a polynomial becomes a non-trivial activity, which
requires significant experience with the system.

Our approach is to implement a computer algebra system on top of a proof
assistant. For our prototype we chose the LCF-style theorem prover HOL Light

[16]. Thanks to this, we obtain a CAS system where the user can be sure of the
correctness of the results. Such a system has strong semantics, that is all variables
have types, all functions have precise definitions in the logic of the prover and
for every simplification there is a theorem that ensures the correctness of this
simplification.1 The interface of our computer algebra system resembles most
CAS systems. It has a simple read-evaluate-print loop. The language of the
formulas typed into the system is as close as possible to the language in which
formulas are generally entered in CAS and to the language in which mathematics
is done on paper. Interaction with the system currently looks like this2:

In1 := (3 + 4 DIV 2) EXP 3 * 5 MOD 3

Out1 := 250

In2 := vector [&2; &2] - vector [&1; &0] + vec 1

Out2 := vector [&2; &3]

In3 := diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x)))

Out3 := λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x)

In4 := N (exp (&1)) 10

Out4 := #2.7182818284 + ... (exp (&1)) 10 F

In5 := 3 divides 6 ∧ EVEN 12

Out5 := T

In6 := Re ((Cx (&3) + Cx (&2) * ii) / (Cx (-- &2) + Cx (&7) * ii))

Out6 := &8 / &53

1 In HOL Light simplification is implemented through what in the LCF world is
called conversions. A conversion is a function that takes a term and returns an
equational theorem. The theorem has the given term on its left side and a simplified
version of the term on the right side.

In this paper ‘simplification’ should not be taken to be a fixed reduction hard-
wired into the logic of the proof assistant, the way it is in type theoretical systems
like Coq [12].

2 The ‘&’, ‘Cx’ and ‘#’ are coercions to real, complex and floating point numbers.
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In7 := x + &1 - x / &1 + &7 * (y + x) pow 2

Out7 := &7 * x pow 2 + &14 * x * y + &7 * y pow 2 + &1

In8 := sum (0,5) (λx. &x * &x)

Out8 := &30

One can distinguish three categories of systems that try to fill the gap between
computer algebra and proof assistants:

– Theorem provers inside computer algebra systems:
• Analytica [6],
• Theorema [8],
• RedLog [13],
• logical extension of Axiom [20].

– Frameworks for mathematical information exchange between systems:
• MathML [10],
• OpenMath [15],
• OMSCS [7],
• MathScheme [9],
• Logic Broker [1].

– Bridges between theorem provers and computer algebra systems, also re-
ferred to as ad-hoc information exchange solutions:
• PVS and Maple [14],
• HOL and Maple [17],
• Isabelle and Maple [4],
• NuPrl and Weyl [18],
• Omega and Maple/GAP [21],
• Isabelle and Summit [3].

An important distinction that one can make within the category of bridges is
the degree of trust between the prover and the CAS. In some of these solutions
the prover uses the simplification of the CAS as an axiom, i.e., without checking
its correctness. But in other solutions the prover takes the CAS output and then
builds a verified theorem out of it. In this case there are again two possibilities:
either the result is verified independently of how the CAS obtained it, or the
system takes a trace of the rules that the CAS applied, and then uses that as a
suggestion for what theorems should be used to construct a proof of the result.

In the work that we referred to here either the proof assistant is built inside
the CAS, or the proof assistant and the CAS are next to each other. In our work
however, we have the CAS inside the proof assistant.

Of course in many proof assistants there already is CAS-like functionality, in
particular many proof assistants have arithmetic procedures or even powerful
decision procedures. However, we do not just provide the functionality, but also
build a system that can be used in a similar way as most other computer algebra
systems are used.

In our system it is the first time that anyone pursued the combination of a
CAS inside a proof assistant (in which all simplifications are validated), with an
interface that has the customary CAS look and feel.
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Our way of combining theorem proving and computer algebra has advantages
over the ones presented above. All calculations done by our system are certified
by the architecture of our system. All formulas defined inside it have types
assigned, all defined operators have explicit semantics and all simplifications
performed have theorems associated with them. No translation of formulas or
semantics is needed, as the CAS shares the internal data structures of the proof
assistant. There is no need to worry about mistakes in the implementation of
the CAS, since all conversions are certified using the logic of the underlying
prover. There is no verification required after the result is obtained, thanks to
the creation of theorems alongside with the results. All simplifications performed
by our architecture are completely certified, that is if a certificate for a particular
simplification does not exist [5] it can not be performed. All variables used in
HOL Light conversions have to be typed, so working in a proof assistant might
seem less flexible than a traditional CAS implementation, but the abundance of
decision procedures for HOL show that this probably is not a strong limitation.

The paper is organized as follows: in Section 2 we present the architecture of
the system. In Section 3 we talk about the knowledge base. Finally in Section 4
we present a conclusion.

2 Architecture

We present a general architecture for a certified computer algebra system, and
we will describe an implementation prototype. The source for the prototype is
available from http://www.cs.ru.nl/∼cek/holcas/. For the implementation
we chose the proof assistant HOL Light [16]. The factors that influenced our
choice were: the possibility to manipulate terms to create the conversions, prove
theorems and implement the system in the same language3, as well as a good
library of analysis and algebra. The system created is rather a proof of concept
than a real product, which is why the efficiency of the underlying prover was
not a decisive factor. In particular we perform all computations inside the proof
assistant’s logic, sometimes with the help of decision procedures.

Our system is divided in three independent parts (Fig. 1): the user interface
(input-response loop), the abstract algorithm of dealing with a formula (we will
call this the CAS conversion), and the knowledge that is specific to the CAS
system. That architecture allows the user both to use it as a computer algebra
system, as well as making it usable in the context of theorem proving4.

2.1 Input-Response Loop

The system displays a prompt, where one can write expressions to be simplified
and commands. It is necessary to distinguish expressions to be computed or
simplified from commands that represent actions that do not evaluate anything,
like listing theorems or modifying and printing assumptions.
3

HOL Light is written in OCaml and is provided as an extension of it.
4 The CAS conversion can be applied to a goal to be proved using CONV TAC.

http://www.cs.ru.nl/~cek/holcas/
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Fig. 1. Architecture of a CAS inside a TP system with responsibilities of the parts of
our implementation marked. The prover is not marked on the figure, since all parts
make use of it, by using it’s type of terms and theorems, as well as tactics and conver-
sions to build them.

Every expression that is not recognized as a command is passed to the CAS
conversion, which will try to compute or simplify the expression. The theorem
given back by the CAS conversion is the certificate that the output is correct.
If the CAS conversion is not able to simplify the term, it returns an instance of
reflexivity, and the result is then the same as the input.

In most CASs variables can be used without declaring them, but for certain
algebraic operations one can define a variable to be of a particular type (necessary
for example in Magma). Our system can handle expressions in both ways. The
free variables are typed using HOL Light type inference, but one can also
require a specific type with the assumetype command (described in section 3.4).

Most computer algebra systems allow one to reuse previously typed in ex-
pressions and calculated outputs. One may calculate In1 + Out2. The loop has
to have access to all expressions entered, theorems proved and outputs. In our
framework every expression entered is stored with its type, so when it is reused,
parsing the same expression, even in a different context, gives the same type.

2.2 Abstract CAS Conversion

To be able to benefit from the CAS simplification in theorem proving, it is use-
ful to have the CAS functionality available as a single conversion (that we call
here the CAS conversion). Since the underlying prover can be further developed
and new theorems can be proved later, it is useful to separate the CAS con-
version from the knowledge that it uses. For this reason the CAS conversion is
parametrized. The general idea behind the CAS conversion is to try to apply all
sub-conversions from the knowledge base at all positions in the term until it is
saturated (Fig. 2). Applying the same conversions to a modified term is neces-
sary, since some conversions return terms, parts of which can be again simplified.
Particular implementations may include mechanisms to increase efficiency or to
provide termination of simplification.

We are not particularly aiming at completeness for the algorithms in the CAS
conversion, since completeness in practice can only be realized for rather basic
theories. However any mathematically correct algorithm that exists for existing



Certified Computer Algebra on Top of an Interactive Theorem Prover 99

computer algebra systems can be implemented as a HOL Light conversion too,
that does the calculation while building the correctness proof in parallel. Ex-
amples include conversions that perform algorithms for integration, conversions
that perform splitting and joining for branching calculations, or conversions that
simplify terms involving higher order operations (like summation).

Yes

Yes YesNo No

No

Not
Found

Not
FoundFound

Found

Lookup the
term in cache

Was it
simplifiable

Is it a combination
or an abstraction

Return
the theorem

Fail
Is any subterm

simplifiable

Simplify
and restart

Lookup the term
in discrimination net

Simplify
and restart

Fail

Fig. 2. Our implementation of the CAS conversion first tries to look up the term in
a built-in cache (for efficiency). If the term is an application or an abstraction, then
it tries to simplify subterms recursively (not performed if the term is known not to
be expandable or is a suggestion that should not be expanded, for example NUMERAL

or assuming). Finally it tries to apply all conversions from the knowledge base to the
term.

3 CAS-Like Knowledge

The knowledge base is a separate part of the system. The knowledge is kept in
a discrimination net (a structure that allows matching a term to a number of
patterns efficiently). There is an interface on the theorem prover level that allows
introducing knowledge to the knowledge base in the following three forms:

– Rewrite rules, for example:
|- ∀z. abs (norm z) = norm z

– Conditional rewrite rules, for example:
|- ∀x. &0 <= x ==> abs x = x

– Conversions meant to be used with an argument that matches a certain
pattern and return ad-hoc rewrite rules. An ad-hoc rewrite rule is a theorem
that is generated to be used for rewriting the formula, but it is not added
to the knowledge base (although our implementation keeps all rewritten
theorems in cache, implemented as a hash-table, for efficiency reasons). For
example the HOL Light conversion DIVIDES CONV takes terms that match
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the pattern n divides m and then returns ad-hoc rewrite rules for the given
data like |- 33 divides 123453 <=> T.

The CAS conversion has to check whether the given term matches one of
the rewrite rules and ad-hoc rewrite rules in the knowledge base. For efficiency
it keeps all theorems and conversions included in the knowledge base in a dis-
crimination net. To allow matching conversions with even less overhead, optional
patterns for matching associated with conversions can be provided. The discrim-
ination net is not changed, the particular used instances are only added to the
cache.

To resemble a CAS system, the formulas processed by the system should be
in the “evaluation” form and not in “verification” form.

Let us compare the ways in which one writes differentiation in the HOL Light

library and the way it is written in our CAS:

∀x. (f diffl (g x)) x → diff f = g
(f diffl (g x)) x → diff f x = g x

In HOL Light the diffl predicate takes three arguments: the function (on
the left of the predicate), the value of its derivative and the point. To write a
general derivative we need to generalize the point and replace the value with the
derivative function in this point. Even then it is still a binary predicate.

In most computer algebra systems there exists a simple diff operator, that
takes a function and returns its derivative. Using the Hilbert’s choice operator,
we created a such function, defined: diff f = λx. εv. (f diffl v) x. We
also created a conversion that is able to calculate the derivative of a function, if
HOL Light’s DIFF CONV can.

Just like we defined a functional form of differentiation, we also defined a
functional integration operator. Using these we can then compute the following
expressions in the system:

In9 := dint (&1,&2) sin

Out9 := -- &1 * cos (&2) + cos (&1)

In10 := dint (&1,&2) (λx. x pow n)

Out10 := &1 / &(n + 1) * &2 pow (n + 1) +

-- &1 * &1 / &(n + 1) * &1 pow (n + 1)

In11 := diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x))) (&2)

Out11 := exp (exp (&2)) * exp (&2) pow 2 + exp (exp (&2)) * exp (&2) +

-- &12 * sin (&4)

In12 := diff (λx. dint (x,x + &2) (λx. x pow 3))

Out12 := λx. &6 * x pow 2 + &12 * x + &8

Our differentiation and integration definitions do not work well with partial
functions. An approach for defining them in such a way that partial functions
are handled better will be described in Section 4.

3.1 Numerical Approximations

In complex calculations computer algebra systems provide users with numerical
approximations. They are usually implemented with an approximation algo-
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rithm, which keeps an error bound with every calculation. In a proof assistant
a numerical approximation must have its semantics completely defined, and the
algorithm has to respect the approximation definition and theorems that specify
its properties.

The two main ways of rounding a real number are down to an integer and
towards the nearest integer. Both these operations do not give rise to a com-
putable function (see for example [19]). In [22] it is shown that if one computes
non-deterministically either one of those values then one does get a computable
function. We will use a conversion that calculates the value rounded both down
and to nearest value, that terminates when one of those calculations terminate.

We propose to define the numerical approximation of a given number x to a
precision p as identical to the number itself: N x p = x. It is only a hint for the
system that the number has to be simplified to a decimal fraction plus a rest. It
is the rest, that determines in which form is the number given: rounded down or
rounded to the nearest. For rest defined in this way we provide a theorem, that
states that the approximation can be different from the exact value only on the
last digit, and the difference is less than one.

In the following HOL Light definitions, N is the numerical approximation of
a number to a precision (following the convention of Mathematica) and ...
is the rest of a number to the given precision with an additional argument that
specifies the form of the rest. T stands for rounding to nearest and F stands for
rounding down.

... x p F = x - floor (&10 pow p * x) / &10 pow p

... x p T = x - floor (&10 pow p * x + &1 / &2) / &10 pow p

|- abs(... x p v - x) < &1 / &10 pow p

The system is able to compute some numerical approximations with this
scheme:

In13 := N (&1 / &3) 8

Out13 := #0.33333333 + ... (&1 / &3) 8 F

In14 := N (sqrt #5.123456789) 8

Out14 := #2.26350542 + ... (sqrt #5.123456789) 8 F

In15 := N (dint (#0.1,#0.4) exp) 7

Out15 := #0.3866537 + ... (-- &1 * exp #0.1 + exp (&2 / &5)) 7 F

3.2 Assumptions

In most CASs there is a possibility to make type assumptions or binary assump-
tions about variables. Examples include assuming a variable to be greater than
zero, greater than another variable, natural or real. There are various methods
of introducing assumptions in computer algebra systems:

– Assumptions associated with a simplification
in Mathematica: Simplify[Sin[n Pi], Element[n,Integers]]

– Global list of assumptions
in Maple: assume(x>0); sqrt(x*x);
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– Asking the user for conditions on variables (e.g. Maxima)
– Adding assumptions automatically and silently to the prover environment

(e.g. MathXpert)

In our system we keep a global list of assumptions, which are Boolean prop-
erties that may be later used to instantiate assumptions of rewrite rules and
ad-hoc rewrite rules. In a big CAS the number of rules that can be used is so big
that asking the user seems not to be a good choice. Also automated assuming
will probably not behave too well in such a situation.

An assumption can be introduced by the user either using assume, which
takes a Boolean, or assumetype which takes a typed variable. An assumption
associated with a single simplification of a sub-term may be also introduced us-
ing assuming. The latter method temporarily changes the assumptions list to
simplifying the sub-expression. The assumptions will be added to the assump-
tions of the theorem generated by the CAS conversion, which is why changing
the assumptions list is only useful at the top-level of the expression to simplify.

The global list of assumptions is used by the conversions from the knowledge
base, therefore we consider is a part of the latter. To ensure the usage of vari-
ables with correct types, type checking has to have access to this list. When an
expression is typed in the system it is type-checked in a particular context. This
context includes types already assigned to all free variables from the assumptions
list, as well as all variables for which types have been assumed with assumetype.
To do this, the latter are kept in another global list.

For example,
√

x2 cannot be simplified to x, since we don’t know whether x is
positive or not. Also x

x cannot be simplified to 1, since it is possible that x = 0.

In16 := sqrt (x * x)

Out16 := abs x

In17 := x / x

Out17 := x * inv x

When an assumption about x is introduced, stating that it is greater then 1,
numeric things about x can be proved, and both of the above formulas can be
simplified:

In18 := assume (x > &1)

Out18 := T

In19 := x > #0.5

Out19 := T

In20 := sqrt (x * x)

Out20 := x

In21 := x / x

Out21 := &1

There are two ways in which assumptions are used: direct and indirect. The
first way is to use an assumption directly in the derivation in unchanged form. It
can be used to a prove a reflexive theorem or to fill the requirement of a certain
conditional rewrite rule (or a conditional ad-hoc rewrite rule). An assumption
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may be used as an indirect step in the derivation, for example simplifying abs(x)
to x requires x ≥ 0, and the assumption x > 1 can be used for this.

3.3 Manipulating Assumptions

A CAS has to provide a mechanism for adding assumptions and listing defined
assumptions. In our prototype we added the assumptions and about commands,
which resemble their Maple equivalents.

Command: about Argument: x

‘x > &1‘

An issue that is hard to handle in any approach are errors that may be caused
by incorrect parsing and printing. We try to be as close as possible to the original
HOL Light’s parsing and printing mechanism. In fact, the system currently
uses HOL’s term printing (with special output for errors) but, when parsing, the
system has to add typing information and distinguish commands from terms.
Special output is added, so that the user always knows when a given string has
been interpreted as a command.

To further lower the risk of parsing and printing problems, we add the
theorems command. It allows printing all theorems defined in a session. The
standard HOL Light theorem printing function is used for this. It is espe-
cially useful for conversions that use assumptions, because in that it case the
assumptions that have been actually used will be shown. Below are the first five
theorems proved by the examples from this document:

Command: theorems

|- (3 + 4 DIV 2) EXP 3 * 5 MOD 3 = 250

|- vector [&2; &2] - vector [&1; &0] + vec 1 = vector [&2; &3]

|- diff (diff (λx. &3 * sin (&2 * x) + &7 + exp (exp x))) =

(λx. exp x pow 2 * exp (exp x) + exp x * exp (exp x) +

-- &12 * sin (&2 * x))

|- N (exp (&1)) 10 = #2.7182818284 + ... (exp (&1)) 10 F

|- 3 divides 6 ∧ EVEN 12 <=> T

4 Conclusion

Our work integrates computer algebra and proof assistant technology. We will
now look at how our architecture compares with what one gets by just having a
CAS or a proof assistant.

Developing a system according to our architecture (i.e., where the algorithms
not only generate the results, but also generate certificates of the correctness of
those results) will be slower than the development of traditional CAS systems
(because that only has to generate the results). As far as the performance of the
system is concerned, our architecture will be somewhat slower than a traditional
CAS as well. This is mostly because generating the certificates for all simplifica-
tions also takes time. However, we expect this slow-down over traditional CAS
to only multiply the running time by a constant factor. Our expectation is not
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experiment based, but based on the architecture, we trace what a traditional
CAS does and provide proofs for every step.

When we compare our architecture to the way that one normally does CAS-
like manipulations in an interactive theorem prover, the main difference is the
interaction model. Our CAS system does not interactively work on propositions
that are to be proved, but instead takes an expression and automatically sim-
plifies it.

Our primary focus is to extend the knowledge base with a formalization of
multivalued functions, to be able to handle more complicated expressions, like
the Maple example of a complex function with multiple branches given in the
introduction.

Another important feature that we plan to investigate are the coercions that
many proof assistants use, like the embedding of the integers in the real numbers
or the real numbers in the complex numbers. Currently a user of our prototype
needs to use the ‘&’ and ‘Cx’ symbols for this (as is customary in the HOL Light

library). A small improvement to the current situation might be to overload the
‘&’ operator, but we would rather not make the user write these functions at all.

An issue that our approach does not cover is completeness of the conversions.
In the case of rewrite rules the completeness is clear. But in the case of arbitrary
algorithms, it is not guaranteed by our architecture that a given conversion will
always terminate and never fail.

We believe that both computer algebra systems and proof assistants currently
have a problem. In computer algebra the lack of explicit semantics and the lack
of verification of the results inside the system makes the systems less reliable
than one would like them to be. In proof assistants the powerful symbolic ma-
nipulations that are taken for granted in computer algebra often are missing
and, even when present, it takes work and expertise to make use of it.

We claim that the architecture that we present here can solve both problems
simultaneously. The computer algebra systems will get explicit semantics and
certification. And the proof assistants will get CAS-like functionality that will
make them more powerful and easier to use than they are today.
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Abstract. This paper looks at the feasibility of applying the quantifier
elimination program QEPCAD-B to obtain quantifier-free conditions for
the approximate factorization of a simple hyperbolic linear partial differ-
ential operator (LPDO) of order 2 over some given bounded rectangular
domain in the plane. A condition for approximate factorization of such
an operator to within some given tolerance over some given bounded
rectangular domain is first stated as a quantified formula of elementary
real algebra. Then QEPCAD-B is applied to try to eliminate the quan-
tifiers from the formula. While QEPCAD-B required too much space
and time to finish its task, it was able to find a partial solution to the
problem. That is, it was able to find a nontrivial quantifier-free sufficient
condition for the original quantified formula.

1 Introduction

Let Q denote the field of all rational numbers, and let R denote the polynomial
ring Q[x, y] in the variables x and y over Q. A linear partial differential operator
(LPDO) in x and y over Q is an element of the noncommutative ring R[∂x, ∂y],
where ∂x and ∂y denote the usual derivation operators on R. An LPDO is of
order n if the highest order derivations occurring in it are of the n-th order.

While factorization of linear ordinary differential operators is well studied
and has a well developed algorithmic theory, the theory of factorization of LP-
DOs is much more difficult. One constructive factorization method for LPDOs –
Beals-Kartashova (BK) factorization – was introduced in [1]. The method could
roughly be described as a straightforward search for first order factors of a given
LPDO from the left, so to speak. One simply expresses a given LPDO of order
n as a symbolic product of a first order factor on the left and an (n− 1)st order
factor on the right. One writes down a system of equations for the symbolic
coefficients of the factors. Then one tries to solve these equations. Usually one
or more factorization conditions are thereby derived, necessary and sufficient for
the existence of such factors. In case the factorization conditions are fulfilled,
the factors can be obtained, and the method applied recursively to the factor on
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the right. A simple LPDO of order 2, together with its factorization condition,
and its factorization when the condition is satisfied, is presented in Section 2.

The idea to use BK-factorization for the approximate factorization of an
LPDO over some bounded domain is discussed in [2]. It is motivated by the
important application area of numerical simulations. The processing time for
such numerical simulations could be substantially reduced if instead of compu-
tation with one LPDO of order n we could proceed with n LPDOs all of order 1.
In numerical simulations the coefficients of the given operator are given within
some tolerance. It is thus not necessary to fulfil the factorization conditions ex-
actly, but instead within some given tolerance, and over some bounded domain.
This leads to the idea of approximate factorization conditions for an LPDO over
some bounded domain. Approximate factorization conditions would be expected
to be formulated using quantifiers over the real numbers.

The idea of the present paper is to look into the feasibility of obtaining
quantifier-free approximate factorization conditions using quantifier elimination
by cylindrical algebraic decomposition (QE by CAD) [3]. This idea was suggested
to us by Bruno Buchberger [4]. In Section 2 of this paper we formulate an ap-
proximate factorization condition for a so-called hyperbolic LPDO of order 2
with simple polynomial coefficients. We use the language of Tarski algebra to do
this. In Section 3 we provide a brief synopsis of QE by CAD. In Section 4 we
report the results of applying a computer program for carrying out QE by CAD
to the approximate factorization condition obtained in Section 2 in an attempt
to find a quantifier-free version of the condition. We find that, while our pro-
gram could not solve the problem given using a reasonable amount of time and
space, it was able to find a partial solution to the problem. More specifically,
it was able to find a nontrivial quantifier-free sufficient condition for the given
quantified formula.

2 Factorization Conditions for a Hyperbolic LPDO of
Order 2

Let us consider a hyperbolic LPDO of order 2 in canonical form:

H2 = ∂2
x − ∂2

y + p∂x + q∂y + r, (1)

where the coefficients p, q, r are arbitrary elements of R (that is, arbitrary poly-
nomials in x and y over Q). We say that H2 is factorizable if H2 can be expressed
in the form

H2 = (∂x ± ∂y + s)(∂x ∓ ∂y + t),

for some elements s and t of R. With ω = ±1, put

Rω = (∂x − ω∂y)
(

p− ωq

2

)
+

p2 − q2

4
.

It follows from equation system 2 in [1], specialised for H2, that H2 is factorizable
if and only if

[r = R−1] ∨ [r = R1]. (2)
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If the former disjunct is valid, then

H2 = (∂x + ∂y +
p− q

2
)(∂x − ∂y +

p + q

2
),

and if the latter disjunct is valid then

H2 = (∂x − ∂y +
p + q

2
)(∂x + ∂y +

p− q

2
).

The reader is reminded that multiplication of such LPDOs is in general non-
commutative. Hence the former factorization need not imply the latter, and vice
versa.

Suppose now that the polynomial coefficients of the operator H2 are of the
first degree: say p(x, y) = p3x + p2y + p1, q(x, y) = q3x + q2y + q1, r(x, y) =
r3x+r2y+r1. Then – by expanding the Rω in terms of x and y and equating the
coefficients of r and the Rω – the factorization condition (2) can be expressed
as a disjunction of two systems of equations in the nine variables pi, qj and rk.
The solution of this disjunction of equation systems yields all exactly factorizable
hyperbolic LPDOs of this type.

For the remainder of this paper we will address the problem of trying to
determine and simplify a condition for approximate factorization of hyperbolic
operators of this type. We use the standard formal language of elementary real
algebra, that is, Tarski algebra [3], to formulate a condition for approximate
factorization of hyperbolic operators of this type as a quantifier elimination (QE)
problem. In addition to the coefficients of the given operator H2, we assume that
we are also given:

(1) a constant ε;
(2) constants M and N , which define a bounded rectangular region in the

plane: −M < x < M , −N < y < N .
With all this given, and with ω = ±1, let us consider the quantified formula

of elementary real algebra φ∗ = φ∗(pi, qj , rk) which asserts that “for all x and y
in the bounded region −M < x < M , −N < y < N , we have −ε < r(x, y) −
Rω(x, y) < ε.” We wish to eliminate the quantifiers from φ∗(pi, qj , rk). More
precisely, we wish to find a formula of elementary real algebra φ′ = φ′(pi, qj , rk),
free of quantifiers, such that if φ′(pi, qj , rk) is true then φ∗(pi, qj , rk) is true. That
is, we wish to find conditions on the coefficients of the polynomials p(x, y), q(x, y)
and r(x, y) which imply that the function Rω(x, y) differs not too much from
one these polynomials, namely r(x, y), throughout the bounded region −M <
x < M , −N < y < N .

3 Synopsis of QE by CAD

Let A be a set of integral polynomials in x1, x2 . . . , xr , where r ≥ 1. An A-
invariant cylindrical algebraic decomposition (CAD) of Rr, r-dimensional real
space, is a decomposition D of Rr into nonempty connected subsets called cells
such that
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1. the cells of D are cylindrically arranged with respect to the variables
x1, x2, . . . , xr;

2. every cell of D is a semialgebraic set (that is, a set defined by means of
boolean combinations of polynomial equations and inequalities); and

3. every polynomial in A is sign-invariant throughout each cell of D.

The CAD algorithm as originally conceived [3,5] has inputs and outputs as
follows. Given such a set A of r-variate polynomials and a nonnegative integer f
with f < r, the algorithm produces as its output a description of an A-invariant
CAD D of Rr, in which explicit semialgebraic defining formulas are provided
only for the cells of the CAD Df of Rf induced (that is, implicitly determined)
by D. The description of D comprises lists of indices and sample points for the
cells of D. (Every cell is assigned an index which indicates its position within
the cylindrical structure of D.)

The working of the original CAD algorithm can be summarized as follows.
If r = 1, an A-invariant CAD of R1 is constructed directly, using polynomial
real root isolation. If r > 1, then the algorithm computes a projection set P of
(r− 1)-variate polynomials (in x1, . . . , xr−1) such that any P -invariant CAD D′

of Rr−1 can be extended to a CAD D of Rr. If f = r we set f ′ ← f − 1 and
otherwise set f ′ ← f . Then the algorithm calls itself recursively on P and f ′ to
get such a D′. Finally D′ is extended to D. In order to produce semialgebraic
defining formulas for the cells of Df the algorithm must be used in a mode called
augmented projection.

Thus for r > 1, if we trace the algorithm, we see that it computes a first
projection set P , eliminating xr, then computes the projection of P , eliminating
xr−1, and so on, until the (r− 1)-st projection set has been obtained, which is a
set of polynomials in the variable x1 only. This is called the projection phase of
the algorithm. The construction of a CAD of R1 invariant with respect to the
(r − 1)-st projection set is called the base phase. The successive extensions of
the CAD of R1 to a CAD of R2, the CAD of R2 to a CAD of R3, and so on,
until an A-invariant cad of Rr is obtained, constitute the extension phase of the
algorithm.

Now we consider the quantifier elimination (QE) problem for the elementary
theory of the reals: given a quantified formula (known as a QE problem instance)
of elementary real algebra

φ∗ = (Qf+1xf+1) . . . (Qrxr)φ(x1, . . . , xr)

where φ is a formula involving the variables x1, x2, . . . , xr which is free of quan-
tifiers, find a formula φ′(x1, . . . , xf ), free of quantifiers, such that φ′ is equivalent
to φ∗. The QE problem can be solved by constructing a certain CAD of Rr. The
method is described as follows.

1. Extract from φ the list A of distinct non-zero r-variate polynomials occur-
ring in φ.

2. Construct lists S and I of sample points and cell indices, respectively, for
an A-invariant CAD D of Rr, together with a list F of semialgebraic defining
formulas for the cells of the CAD Df of Rf induced by D.
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3. Using S, evaluate the truth value of φ∗ in each cell of Df . (By construction
of D, the truth value of φ∗ is constant throughout each cell c of Df , hence can
be determined by evaluating φ∗ at the sample point of c.)

4. Construct φ′(x1, . . . , xf ) as the disjunction of the semialgebraic defining
formulas of those cells of Df for which the value of φ∗ has been determined to
be true.

The above algorithm solves any given particular instance of the QE problem
in principle. However the computing time of the algorithm grows steeply as the
number r of variables occurring in the input formula φ increases.

Collins and Hong [8] introduced the method of partial CAD construction for
QE. This method, named with the acronym QEPCAD, is based upon the sim-
ple observation that we can often solve a QE problem by means of a partially
built CAD. The QEPCAD algorithm was originally implemented by Hong. A re-
cent implementation, denoted by QEPCAD-B, contains improvements by Brown,
Collins, McCallum, and others – see [6]. QEPCAD-B has solved a range of rea-
sonably interesting problems for which the original QE algorithm takes too much
time. Nevertheless the worst case computing time of QEPCAD-B remains large
(that is, it depends doubly-exponentially on r).

4 Application of QEPCAD to BK-Factorization

We consider only the first simple case of approximate factorization described in
Section 2. Using the notation of Section 2, we suppose that ε, M and N have
been given specific constant values, say ε = M = N = 1, and we put ω = −1.
We consider the formula φ∗(pi, qj , rk) which asserts that

(∀x)(∀y)[(|x| < 1 ∧ |y| < 1) ⇒ |r(x, y) −R−1(x, y)| < 1]. (3)

We wish to find a formula φ′(pi, qj , rk), free of quantifiers, such that φ′(pi, qj , rk)
implies φ∗(pi, qj , rk).

Remark 1. It would be of greatest interest to find the most general such
φ′(pi, qj , rk) – that is, to findquantifier-freeφ′(pi, qj , rk) equivalent toφ∗(pi, qj , rk).
But as we’ll see it seems that the time and space resources needed to do this are
prohibitive. We’ll also see that it is not as time consuming, yet hopefully still of
interest, to find quantifier-free conditions merely sufficient for φ∗ to be true.

As a first step we rewrote the quantified formula 3 so that the variables pi, qj , rk

appear explicitly, and the denominator 4 is cleared from the right hand side of
the implication. Expanding in terms of x and y formula 3 thus has the form:

(∀x)(∀y)[(|x| < 1 ∧ |y| < 1) ⇒ |ax2 + bxy + cy2 + dx + ey + f | < 4], (4)

where a, b, c, d, e, f are integral polynomials in the pi, qj , rk. (For example, a =
q2
3 − p2

3, b = 2q2q3− 2p2p3, and c = q2
2 − p2

2.) In fact it is computationally advan-
tageous to use the general form of quantified formula 4, in which a, b, c, d, e, f
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occur as distinct indeterminates, rather than as polynomial expressions in the
pi, qj , rk, because then the total number of variables in the formula is reduced
from 11 to 8.

We attempted to find a solution to the above QE problem instance by running
the program QEPCAD-B with the quantified formula 4 (in its general form)
as its input. The variable ordering used was (a, b, c, d, e, f, x, y). The computer
used for this and subsequent experiments was a Sun server having a 292 MHz
ultraSPARC risc processor. Four megabytes of memory were made available for
list processing. However the program ran out of memory after a few minutes. The
program was executing the projection phase of the algorithm when it stopped.
The first three projection steps – that is, successive elimination of y, x and f –
were almost complete.

Increasing the amount of memory to eighty megabytes did not help – the
program still ran out of memory during the fourth projection step (that is,
during elimination of e).

Of course a very special, but completely trivial, quantifier-free sufficient con-
dition for our QE problem instance is the formula

φ′(pi, qj , rk) := [all pi = 0 ∧ all qj = 0 ∧ all rk = 0].

It could be of some interest to look for partial solutions to (that is, quantifier-
free sufficient conditions for) our QE problem instance in which some but not
all of the variables pi, qj , rk are equal to zero. For example, suppose that we put
p2 = q2 = r2 = 0 in (4). We obtain:

(∀x)(∀y)[(|x| < 1 ∧ |y| < 1) ⇒ |a′x2 + d′x + f ′| < 4],

where a′, d′, f ′ are polynomials in p1, p3, q1, q3, r1, r3. (In fact we have a′ = a and
d′ = d.) Clearly this formula is equivalent to:

(∀x)[(|x| < 1) ⇒ |a′x2 + d′x + f ′| < 4], (5)

which we shall denote by ψ∗(pi, qj, rk).
The following theorem shows that a partial solution to the special QE problem

instance ψ∗(pi, qj , rk) (that is, a quantifier-free sufficient condition for ψ∗) leads
to a partial solution to the QE problem instance φ∗ (that is, a quantifier-free
sufficient condition for φ∗).

Theorem 1. Suppose that ψ′(pi, qj , rk) is a quantifier-free formula, involving
only p1, p3, q1, q3, r1, r3, which implies ψ∗(pi, qj , rk). Then the quantifier-free for-
mula ψ′(pi, qj , rk) ∧ p2 = 0 ∧ q2 = 0 ∧ r2 = 0 implies φ∗(pi, qj , rk).

� Let pi, qj , rk be real numbers and let (with slight abuse of notation) a, b, c, d, e, f
denote the values of the polynomials a, b, c, d, e, f at the particular pi, qj , rk. As-
sume ψ′(pi, qj , rk) ∧ p2 = 0 ∧ q2 = 0 ∧ r2 = 0. Then ψ∗(pi, qj , rk) ∧ p2 = 0∧ q2 =
0 ∧ r2 = 0 is true, by hypothesis. Take real numbers x and y, with |x| < 1 and
|y| < 1, and (with slight abuse of notation) let a′, d′, f ′ denote the values of the
polynomials a′, d′, f ′ at the particular pi, qj , rk. Then

|a′x2 + d′x + f ′| < 4,
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by virtue of (5) (since |x| < 1). Hence (4) is true (since a = a′, d = d′, f = f ′,
b = c = e = 0). �
The above discussion suggests that it would be worthwhile to try to find a
solution to the simplified, special QE problem instance ψ∗ using the program
QEPCAD-B. We use the more general form of (5), in which a′, d′, f ′ occur as
indeterminates, and hence reduce by 3 the number of variables in the formula.
For simplicity of the notation hereafter we use the variables a, b, c in place of
a′, d′, f ′, and thus treat the formula:

(∀x)[(|x| < 1) ⇒ |ax2 + bx + c| < 4]. (6)

We ran program QEPCAD-B with (6) as its input. Eighty megabytes of mem-
ory were made available for list processing. After 191 seconds the program pro-
duced the following quantifier-free formula equivalent to (6):

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[ 4 a c - b^2 + 16 a > 0 \/ 4 a c - b^2 - 16 a > 0 \/
[ b^2 - 16 a = 0 /\ b^2 + 16 a > 0 ] \/
[ b^2 - 16 a < 0 /\ b - 2 a >= 0 ] \/
[ b^2 - 16 a < 0 /\ b + 2 a <= 0 ] \/
[ b^2 - 16 a > 0 /\ b + 2 a >= 0 ] \/
[ b^2 - 16 a > 0 /\ b - 2 a <= 0 ] \/
[ b^2 - 16 a = 0 /\ c - b + a + 4 > 0 /\ c - b + a - 4 < 0 ] ].

We could transform this formula into a partial solution ψ′(pi, qj , rk) to ψ∗ by
setting a = q2

3 − p2
3, b = 4r3 − (p3 − q3)(p1 + q1) − (p1 − q1)(p3 + q3), and

c = 4r1 − 2(p3 + q3)− (p1 − q1)(p1 + q1).
It is possible to induce the program to produce an arguably even simpler

solution formula using less computing time by making three separate runs of
QEPCAD-B. The first run uses the command

assume [a < 0].

After just 1.9 seconds the program produced the following quantifier-free formula
equivalent to (6) under the assumption a < 0:

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[ b - 2 a <= 0 \/ b + 2 a >= 0 \/ 4 a c - b^2 - 16 a > 0 ]. (7)

The above formula is perhaps more elegant and understandable. For it is a
slight improvement of (that is, slightly more compact than) a formula seen to be
equivalent to it (under assumption a < 0) which is quite straightforward to derive
by hand from (6) using elementary properties of the parabola y = ax2 + bx + c
on the interval (−1, +1):
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[ 2 a - b >= 0 /\ a + b + c + 4 >= 0 /\ a - b + c - 4 <= 0] \/
[2 a + b >= 0 /\ a - b + c + 4 >= 0 /\ a + b + c -4 <= 0] \/
[2 a - b < 0 /\ 2 a + b < 0 /\ 4 a c - b^2 - 16 a > 0 /\
a - b + c + 4 >= 0 /\ a + b + c + 4 >= 0]. (8)

Remark 2. To derive by hand (8) from (6) under the assumption a < 0, one
has to notice that function f(x) = ax2 + bx + c has its maximum value for
f ′(x) = 2ax+b = 0, that is, for x = −b/(2a), and consider three cases separately:
(1) −b/(2a) ≤ −1, (2) −b/(2a) ≥ +1, and (3) −1 < −b/(2a) < +1. For each of
the above three cases one can then write down necessary and sufficient conditions
for (6) to be true. For example, in Case 1, (6) is clearly equivalent to −4 ≤
a + b + c ∧ a− b + c ≤ 4. After treating each of the above cases, we obtain (8)
by forming the disjunction of the formulas corresponding to the cases.

To obtain a complete solution to the QE problem instance (6) we need to run
QEPCAD two more times, for the cases a > 0 and a = 0, respectively. For the
second run we use the command

assume [a > 0].

and obtain after 1.9 seconds the following quantifier-free formula equivalent to
(6) under the assumption a > 0:

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[ b + 2 a <= 0 \/ b - 2 a >= 0 \/ 4 a c - b^2 + 16 a > 0 ]. (9)

For the third run we put a = 0 in (6) and use the command

assume [b /= 0].

After 60 milliseconds the program produced the following formula equivalent to
(6) with a = 0 under assumption b = 0:

c - b + 4 >= 0 /\ c - b - 4 <= 0 /\
c + b + 4 >= 0 /\ c + b - 4 <= 0 (10)

This is immediately seen to be correct! Finally we could obtain a complete
solution to (6) by combining (7) for a < 0, (9) for a > 0, (10) for b = a = 0
and the formula c - 4 < 0 /\ c + 4 > 0 (for a = b = 0). In fact a simple and
elegant way to achieve such a combination is as follows:

c - b + a + 4 >= 0 /\ c - b + a - 4 <= 0 /\
c + b + a + 4 >= 0 /\ c + b + a - 4 <= 0 /\
[ b - 2 a <= 0 \/ b + 2 a >= 0 \/
4 a c - b^2 - 16 a > 0 \/ a >= 0] /\
[ b + 2 a <= 0 \/ b - 2 a >= 0 \/
4 a c - b^2 + 16 a > 0 \/ a <= 0]. (11)
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5 Discussion

As we remarked in Section 3 the worst case computing time of QEPCAD-B grows
steeply as the number of variables in the given QE problem instance increases.
Indeed, as is suggested by the results reported in Section 4, a complete solution
of the QE problem instance (4) by QEPCAD-B using a reasonable amount of
time and space seems to be unlikely for the foreseeable future.

Nevertheless the results of Section 4 also suggest that QEPCAD-B could be
of help in searching for certain kinds of sufficient conditions for (3), especially
those which involve setting some of the variables to zero.

We briefly mention here another kind of approach which a person could use
to derive another kind of sufficient condition for (4) by hand. We simply notice
that a sufficient condition for (4) is:

|a| < 4
6
∧ |b| < 4

6
∧ |c| < 4

6
∧ |d| < 4

6
∧ |e| < 4

6
∧ |f | < 4

6
.

The above sufficient condition is unlikely to be obtained in a reasonable amount
of time and space using QEPCAD-B applied to (4), even if one issues assume
commands. The number of variables involved is probably too big. However a
version of QEPCAD-B which is planned for the future, which will have the
capability to determine adjacency relationships amongst the cells of the partial
CAD, could be of some use in analyzing certain topological properties of the
truth set in nine-dimensional space of the corresponding quantifier-free formula
in pi, qj , rk obtained from the above.
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Rule-Based Simplification in Vector-Product
Spaces

Songxin Liang and David J. Jeffrey
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London, Ontario, Canada

Abstract. A vector-product space is a component-free representation of
the common three-dimensional Cartesian vector space. The components
of the vectors are invisible and formally inaccessible, although expres-
sions for the components could be constructed. Expressions that have
been built from the scalar and vector products can be simplified us-
ing a rule-based system. In order to develop and specify the system,
an axiomatic system for a vector-product space is given. In addition, a
brief description is given of an implementation in Aldor. The present
work provides simplification functionality which overcomes difficulties
encountered in earlier packages.

1 Introduction

We start with a definition from J. W. Gibbs [7], which appeared in a privately
printed pamphlet that was dated 1881.

An algebra or analytical method in which a single letter or other expres-
sion is used to specify a vector may be called a vector algebra or vector
analysis.

Vector analysis has found many applications throughout engineering and science.
It often simplifies the derivation of mathematical theorems and the statements
of physical laws, while vector notation can often clearly convey geometric or
physical interpretations that greatly facilitate understanding.

Almost all well known computer algebra systems provide basic vector data-
types and vector operations. The data types, however, consist of lists of com-
ponents, and there is no provision for a letter or other symbol of the system to
have vector attributes such as was intended by Gibbs. This is a great pity, as a
perusal of any advanced textbook in physics will reveal vector expressions being
formed and worked with in a component-free way. In addition to the operations
that are built-in, meaning that they are distributed with the base system, the
major systems offer vector-analysis packages, for example, the VectorAnalysis
package for Mathematica [15], the Vector33 package for Reduce [8] and the
VectorCalculus package in Maple. There are a number of vector analysis pack-
ages build on the well known systems, for example, the VecCalc package using
Maple [2], the Vect package using Macsyma [14] and the OrthoVec package us-
ing Reduce [5]. All these packages, however, rely on component representation.
The following shows some features of the VectorCalculus package in Maple.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 116–127, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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> with(VectorCalculus)
> CrossProduct(A, B)

Error, (in VectorCalculus:-CrossProduct) the first argument
must either be the differential operator Del, or a three
dimensional VectorField, got A

> DotProduct(A, B)
A . B

It is curious that Maple checks the arguments of CrossProduct and requires
an explicit set of components, but DotProduct does not. In any event, it is clear
that the package does not expect abstract vectors. Once explicit components are
given, the package is able to perform common tasks.

> A := <a, b, c>
A := a e_x + b e_y + c e_z

> B := <d, e, f>
B := d e_x + e e_y + f e_z

> CrossProduct(A, B)
(b f - c e) e_x + (c d - a f) e_y + (a e - b d) e_z

> DotProduct(A, B)
a d + b e + c f

Like the VectorCalculus package, almost all existing packages can only perform
component-dependent operations. They cannot perform component-free opera-
tions. This means that before one can do any vector analysis, one must set the
components for all vectors involved. This is inconvenient when one wants to deal
with problems containing many vectors and only wants to know the relationship
among them, because the expansion of vector expressions into specific compo-
nents is usually tedious and error prone. With a component-free system, one is
free from the distracting details of individual components and can concentrate
on the meaningful results of the problems.

For more detailed commentary, we introduce some notation. Vectors are de-
noted by bold-face letters; for the vector product of a and b, we use the notation
of Chapman [3], namely a∧b. The scalar product is a•b, and (abc) or (a,b, c)
stands for the scalar triple product (a ∧ b) • c of three vectors a, b and c.

Compared with component-dependent systems, which have a systematic
method for deriving mathematical statements, component-free systems are more
difficult and challenging because vector algebra has a strange and intriguing
structure [12].

– Vectors are not closed under the scalar product operation. If p, q are vectors,
then p • q is a scalar.

– The scalar product is commutative while the vector product is anticommu-
tative. If p, q are vectors, then p • q = q • p while p ∧ q = −q ∧ p.

– Neither is associative. If p, q, r are vectors, then p ∧ (q ∧ r) = (p ∧ q) ∧ r,
whereas p • (q • r) and (p • q) • r are invalid.

– Neither has a multiplicative unit. There does not exist a fixed vector u such
that for any vector p, u ∧ p = p or p ∧ u = p or u • p = p or p • u = p.
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– Both admit zero divisors. For any vector p, p ∧ p = 0; if q is a vector
perpendicular to p, then p • q = 0.

– The two operations are connected through the operation of scalar-vector
multiplication ∗ by the strange side relation p∧(q∧r) = (p•r)∗q−(p•q)∗r.

In contrast to the number of component-dependent vector analysis packages,
to our knowledge, only the packages [6], [10] and [12] address component-free
vector operations. However, the emphasis of these packages is still on component-
dependent operations, and only the package by Stoutemyer [12] provides non-
trivial simplification examples. Even in Stoutemyer’s package, however, simplifi-
cation problems remained unsolved. For example, when he tried to simplify the
vector expression

(a ∧ b) ∧ (b ∧ c) • (c ∧ a)− (a • (b ∧ c))2

which should be simplified to zero, he only got

−a • c ∧ (a • b ∧ c ∗ b− a • b ∧ (b ∧ c))− (a • b ∧ c)2.

When he returned this expression to his simplification engine, instead of getting
the desired result 0, he could only get

a • (a • b ∧ c ∗ b) ∧ c− (a • b ∧ c)2.

He explained that the scalar factor a•b∧c could be factored out, clearly revealing
that the expression is zero, but the built-in scalar-factoring-out mechanism could
not recognize that a •b∧c is a scalar. Therefore, it is necessary and meaningful
to develop a new component-free vector analysis package.

As a final comment on the background, we note that the vector product has
not been generalized beyond 3 dimensions except in a limited way. A general-
ization of the vector product in 3 dimensional space to 7 dimensional case has
been proposed, but the important property p∧ (q∧ r) = (p • r) ∗ q− (p • q) ∗ r
is no longer valid [11]. So we confine ourselves here to the 3 dimensional case.

2 Axiomatic Theory and Transformation Rules

In order to provide a unified picture of component-free vector algebra and
component-dependent vector algebra, we define an axiomatic theory T for a
vector-product space. The language of T is the set of vector operations {+, ∗, •,∧},
where +, ∗, and • correspond to the addition, scalar multiplication and scalar
product of R3 considered as an inner product space of component-free vectors,
and ∧ corresponds to the usual vector product of R3.

The axiomatic set of T consists of the axioms of a real inner-product
vector space, as usually defined on (R3, +, ∗, •) (including the fact of three-
dimensionality), together with the addition of axioms for vector product.
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A0: (a + b) ∧ c = a ∧ c + b ∧ c.
A1: a ∧ b = −b ∧ a.
A2: a ∧ (b ∧ c) = (a • c) ∗ b− (a • b) ∗ c.
A3: (abc) = (bca), where (abc) denotes (a ∧ b) • c.
A4: (abc) = 0 implies that a,b, c are linearly dependent.

Based on the axioms of T , we can now prove the following theorems in T :

T1: a ∧ a = 0.
T2: (abc) = −(acb).
T3: (aab) = (abb) = (aba) = 0.
T4: (a ∧ b) ∧ (c ∧ d) = (abd) ∗ c− (abc) ∗ d.
T5: (a ∧ b) • (c ∧ d) = (a • c)(b • d)− (a • d)(b • c).
T6: (abc) ∗ d = (d • a) ∗ (b ∧ c) + (d • b) ∗ (c ∧ a) + (d • c) ∗ (a ∧ b).
T7: (abc) ∗ d = (dbc) ∗ a + (adc) ∗ b + (abd) ∗ c.
T8: (d • h)(abc) = (d • a)(hbc) + (d • b)(ahc) + (d • c)(abh).
T9: (abc) ∗ (d ∧ h) = (dha) ∗ (b ∧ c) + (dhb) ∗ (c ∧ a) + (dhc) ∗ (a ∧ b).

Proof. For theorem T1, by axiom A1, we have a∧a = −a∧a. Then 2∗(a∧a) = 0,
and (a ∧ a) = 0. For theorem T2, by axioms A1 and A3, we have (abc) =
(a∧b) • c = −(b∧a) • c = −(bac) = −(acb). Theorem T3 follows immediately
from theorem T1. Theorem T4 follows immediately from axiom A2 by viewing
a ∧ b as a single vector.

For theorem T5, by axioms A3 and A2, we have

(a ∧ b) • (c ∧ d) = (a,b, c ∧ d) = (b, c ∧ d, a)
= (b ∧ (c ∧ d)) • a = a • (b ∧ (c ∧ d))
= a • [(b • d) ∗ c− (b • c) ∗ d]
= (a • c)(b • d)− (a • d)(b • c).

Next we prove theorem T6. First, we claim that (abc) = 0 if and only if a,b, c
are linearly dependent. By axiom A4, we only need to prove the “if”. Without
loss of generality, we can express a as a = x ∗ b + y ∗ c. Then by axiom A0 and
theorem T3, (abc) = (a∧b)•c = [(x∗b+y ∗c)∧b]•c = x(bbc)+y(cbc) = 0.

There are two cases for T6. If a, b and c are linearly independent, then
(b ∧ c, c ∧ a,a ∧ b) = (a,b, c)2 = 0. So a ∧ b, b ∧ c, c ∧ a are also linearly
independent, so we can express d as

d = x ∗ (b ∧ c) + y ∗ (c ∧ a) + z ∗ (a ∧ b). (1)

Taking scalar product of both sides of (1) with a, we get d • a = (abc)x, so
x = (d•a)/(abc). Similarly, we can get y = (d•b)/(abc) and z = (d•c)/(abc).
Therefore, by (1), the desired result follows.

If a, b and c are linearly dependent then (abc) = 0. Without loss of generality,
we can express c as c = x ∗ a + y ∗b. Then, by axioms A0, A1 and theorem T1,
the right hand side of T6 is

x(d • a) ∗ (b ∧ a) + y(d • b) ∗ (b ∧ a)− [x(d • a) + y(d • b)] ∗ (b ∧ a) = 0 ,

the left hand side of T6.
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For theorem T7, we can use a similar method as above so we omit the details.
For theorem T8, taking scalar product of both sides of T6 with h and using
axiom A3, the desired result follows immediately. For theorem T9, we can use a
similar method as theorem T6, so we omit the details again. Consequently, all
theorems are proved.

Now we define another axiomatic theory T ′ for component-dependent vectors
in R3. The definitions of the vector operations in T ′ are just the standard ones.
For a,b ∈ R3 with a = (a1, a2, a3) and b = (b1, b2, b3), and k ∈ R, define

k ∗ a = (ka1, ka2, ka3) .

a + b = (a1 + b1, a2 + b2, a3 + b3) .

a • b = a1b1 + a2b2 + a3b3 .

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) .

It is routine to check that the vector operations defined above satisfy all the
axioms of T . Therefore, we have showed that T ′ is a model of T . In this way,
we provide a unified picture of the axiomatic specification of vector operations,
the computation of abstract (component-free) vectors, and the computation of
concrete vectors (component-dependent).

Now we turn to transformation rules. In order to achieve a normal form for an
input vector expression, or to simplify a vector expression to its shortest normal
form, we need transformation rules. The transformation rules consist of the 4
axioms (A0)-(A3) and 9 theorems (T1)-(T9) of T , together with the inverses of
theorems (T6)-(T9). By the inverse of a formula (theorem) A = B, we mean
B = A.

Roughly speaking, the transformation rules can be divided into two types:
expansion type and combination type. An expansion type rule expands a single
term into a sum of different terms, or transfers a single term to another single
term. For example, (abc)∗d = (d•a)∗ (b∧c)+(d•b)∗ (c∧a)+(d•c)∗ (a∧b)
is an expansion type rule. A combination type rule combines a sum of different
terms into a single term. For example, (d•a)(hbc)+(d•b)(ahc)+(d•c)(abh) =
(d • h)(abc) is a combination type rule.

3 Structure and Description of the Package

Our package is developed using Aldor. Aldor [1] is a programming language
with a two-level object model of categories and domains. Types and functions
are first class entities allowing them to be constructed and manipulated within
Aldor programs just like any other values. Aldor is an ideal tool for symbolic
mathematical computations.

For the package, we first define a vector space category VectorSpcCategory as
follows.
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define VectorSpcCategory(R:Join(ArithmeticType, ExpressionType),
n:MI==3): Category==with {
*: (R,%)->%;
*: (%,R)->%;
+: (%,%)->%;
-: (%,%)->%;
-: %->%;
=: (%,%)->Boolean;
default
{
import from R;
(x:%)-(y:%):%==x+(-1)*y;
(x:%)*(r:R):%==r*x;
-(x:%):%==(-1)*x;

}
},

where ArithmeticType and ExpressionType are two categories defined in the al-
gebra library of Aldor and n is the dimension of the space (the default dimension
is 3). Those within the braces after with are the operations for the space.

Then, based on VectorSpcCategory, we define a vector algebra category Vec-
torAlgCategory as follows.

define VectorAlgCategory(R:Join(ArithmeticType,
ExpressionType)):Category == VectorSpcCategory(R) with {
vector: Symbol->%;
zero: ()->%;
Simplify: %->%;
s3p: (%,%,%)->%;
*: (%,%)->%;
apply: (%,%)->%;
/\: (%,%)->%;
<<: (TextWriter,%)->TextWriter;
default
{
s3p(x:%,y:%,z:%):%==apply(x/\y,z);

}
},

where with means that besides the exports of VectorSpcCategory, VectorAlgCat-
egory has additional exports (within the braces) which are normally related to
component-free vector operations. For example, apply is the scalar product, s3p
is the scalar triple product, and ∧ is the vector product.

Finally, we come to the point of implementing the vector algebra domain
VectorAlg in detail.
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VectorAlg(R:Join(ArithmeticType,ExpressionType)):
Join(ExpressionType,VectorAlgCategory R)== add
{
...

},

where the part within the braces after add is the implementation details of the
domain which composes the rest of this paper.

3.1 Normal Form

A common strategy for simplifying expressions in computer algebra is to define
a normal form. We define a normal form for vector expressions as follows.

Definition 1 (Normal Form). A normal form for a vector expression is a
sum of terms. Each term may consist of a real coefficient, a scalar part and a
vector part. The vector part consists of either a single letter or a vector product,
or there is no vector part if the term is not really a vector. If there is a scalar part
for a term, then the factors of the scalar part may consist of single letters, scalar
products and scalar triple products. The terms are in ascending order which is
determined by the termOrder defined in section 3.2.

In our vector algebra package, all input vector expressions will be transferred
automatically into their normal forms. A vector expression can be presented in
different normal forms. For example, according to theorem T6 in section 2, we
can present the same expression in two different normal forms: (abc) ∗ d and
(c • d) ∗ (a ∧ b) − (b • d) ∗ (a ∧ c) + (a • d) ∗ (b ∧ c). However, by using the
simplification functionality (see section 4.2), we can get the shortest normal form
for a given vector expression.

3.2 Data Representations and Term Order

There are two components for a normal form of a vector expression: data rep-
resentation and term order. In our package, a vector expression is presented
internally as:

Rep==List Term, and
Term==Record (coe:R, sca:List List String, vec:List String),

where coe, sca and vec are respectively the real coefficient, the scalar part and
the vector part of a term. For example, the term −2(a •b)(abc) ∗ (c∧d) can be
expressed as [−2, [[“a”, “b”], [“a”, “b”, “c”]], [“c”, “d”]]. Inspired by Stoutemyer’s
unsolved problem, we adopt such data representation because we want to sepa-
rate the scalar part of a term from the vector part of the term.

In the scalar part sca, there are three different kinds of lists of strings. List
of length 1 stands for a scalar of single letter, list of length 2 stands for a scalar
product, and list of length 3 stands for a scalar triple product.
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Similarly, for the vector part vec, list of length 0 means that the term is not
really a vector, list of length 1 stands for a vector of single letter, and list of
length 2 stands for a vector product.

On the other hand, in order to implement the transformation rules in section
2, we also need another minor data structure.

mixTerm == Record(scal:scaList, vec2:List String), where
scaList == List scaTerm, and
scaTerm == Record(coe2:R, sca2:List List String).
This representation is necessary when one wants to simplify a vector expres-

sion which contains terms with the same vector parts. For example, for vector
expression (d • a)(hbc) ∗ c+(d •b)(ahc) ∗ c+ (d • c)(abh) ∗ c, we can combine
the scalar parts of the three terms because they have same vector parts c. Then,
[(d • a)(hbc) + (d • b)(ahc) + (d • c)(abh)] ∗ c is a mixTerm, the scal part is
(d•a)(hbc)+(d•b)(ahc)+(d•c)(abh), the vec2 part is c, and there are three
scaTerms: (d•a)(hbc), (d•b)(ahc) and (d•c)(abh). Using the transformation
rules from section 2, we can simplify the expression to (d • h)(abc) ∗ c.

As mentioned above, the second component for a normal form is term order.
Unlike polynomials which have a natural way to define term order, we have to
choose a term order for our purpose. The order termOrder is defined step by
step as follows.

Firstly, we use the natural order for strings.
Secondly, we define the order for lists of strings. Given two lists of strings

L1 and L2, then L1 < L2 ⇐⇒ #L1 < #L2, or #L1 = #L2 and there exists a
natural number i such that for all 0 < j < i, L1(j) = L2(j) and L1(i) < L2(i),
where #L denotes the length of list L.

Thirdly, we define the order for lists of lists of strings in the same way as
above for lists of strings.

Finally, we define the order of terms for vector expressions. Given two terms
T1 = [coe1, sca1, vec1] and T2 = [coe2, sca2, vec2], then T1 < T2 ⇐⇒ vec1 < vec2,
or vec1 = vec2 and sca1 < sca2, or vec1 = vec2 and sca1 = sca2 and coe1 < coe2

(if R is an ordered arithmetic type).
For example, given a vector expression 5(abc)(a • d) ∗ (b ∧ c) + 2(b • c) ∗

(a ∧ c) + (acd)(a • b) ∗ c, after being sorted by termOrder, the expression will
become (a • b)(acd) ∗ c + 2(b • c) ∗ (a ∧ c) + 5(a • d)(abc) ∗ (b ∧ c).

4 Implementation of the Package

This section addresses the implementation details of the package. These include
the implementation of transformation rules, the implementation of the simplifi-
cation function and the implementation of vector algebra operations.

4.1 Implementations of Transformation Rules

Now we turn to the implementations of transformation rules. The main skill we
use is pattern matching [13]. Since the implementations are detail-involved, we
only give brief descriptions of the algorithms.
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The implementations of expansion type rules are not complicated. For exam-
ple, the following algorithm is to implement the transformation rule (abc)∗d =
(d • a) ∗ (b ∧ c) + (d • b) ∗ (c ∧ a) + (d • c) ∗ (a ∧ b):

Algorithm Rule01
Input: a Rep xx.
Output: a Rep yy.

– Let tx range over the terms of xx.
– If there are lists in tx which match the pattern (abc) ∗d, replace them with

the lists representing (d • a) ∗ (b ∧ c) + (d • b) ∗ (c ∧ a) + (d • c) ∗ (a ∧ b).
– Output the resulting Rep.

Compared with the implementations of expansion type rules, the implementa-
tions of combination type rules are much more complicated. For example, in order
to implement the transformation rule (d•a)(hbc)+(d•b)(ahc)+(d•c)(abh) =
(d •h)(abc), first we have to implement a subalgorithm Match? to check if any
given three scaTerms match the pattern of this rule, then we have to implement
another subalgorithm Comb which combines the matching scaTerms into a single
Term using this rule.

Then the algorithm for implementing the transformation rule (d • a)(hbc) +
(d • b)(ahc) + (d • c)(abh) = (d • h)(abc) can be described as follows.

Algorithm Rule02
Input: a Rep xx.
Output: a Rep yy.

– Change the data representation of xx from Rep to List mixTerm.
– Let tx range over xx, and let L be the scal part of tx.
– If #L < 3, then leave it for output. Otherwise, again let L denote the

collection of scaTerms in L in which there are lists of length 2 and length 3
in their sca2 part, and leave other scaTerms for output.

– In a while-loop, check if any given three scaTerms match the rule using the
subalgorithm Match?.

– If there is no such three scaTerms or #L < 3, then break the loop. Otherwise,
combine the three scaTerms using the subalgorithm Comb and update L.

– output the remaining L.

4.2 Simplification

There are two levels of simplification. Simplify0 is the basic level which, as part of
the definitions of vector algebra operations, transfers an input vector expression
into its normal form. Simplify is the advanced level which, based on Simplify0,
transfers a vector expression into its shortest normal form.

The basic level can be described as follows.

Algorithm Simplify0
Input: an element x of VectorAlg.
Output: an element of VectorAlg.
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– Let tx range over the data representation xx of x.
– Make the scalar part and vector part of tx in ascending order, and use the

transformation rules to check if tx is zero.
– Collect non-zero terms tx, and denote is yy.
– Make yy in ascending order and combine like terms.
– Output the domain element y of yy.

The advanced simplification can be described as follows.

Algorithm Simplify
Input: an element x of VectorAlg.
Output: an element of VectorAlg.

– Perform basic simplification on x.
– Apply transformation rules to the resulting expression one by one within a

while-loop and then perform basic simplification.
– If the resulting expression is shorter than the original one then we replace

the original one with the resulting expression.
– If at any time the number of terms < 3, or the expression is not changed

after applying all transformation rules, break the loop.
– Return after the loop.

5 Examples

We use Aldor Interpreter to test our package. After compiling our source file
into a platform-independent object file vectorAlg.ao, we open the Aldor Inter-
preter using command: aldor -gloop. Then we use the following commands to do
initialization:

%1 >> #include "algebra"
%2 >> #include "aldorinterp"
%3 >> #library aaa "vectorAlg.ao"
%4 >> macro MI==MachineInteger
%5 >> import from aaa, MI, String, Symbol, VectorAlg MI

Now we declare vectors a, b, c, d, e, f, g and h as follows.

%6 >> a:=vector(-"a")
%7 >> b:=vector(-"b")
%8 >> c:=vector(-"c")
%9 >> d:=vector(-"d")
%10 >> e:=vector(-"e")
%11 >> f:=vector(-"f")
%12 >> g:=vector(-"g")
%13 >> h:=vector(-"h")
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At this point, we are ready to test some examples using our package. All
computations have been performed on a Pentium IV PC with 3.2 GHz CPU and
1 GB RAM.

Example 1.

We first test Stoutemyer’s unsolved problem [12].

%14 >> ((a^b)^(b^c)).(c^a)-(a.(b^c))*(a.(b^c))
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec

From the example above, we can see that our package is quite efficient. It only
takes 40 milliseconds to get the result.

Example 2. Now, we test some more examples also from Stoutemyer:

– (a−d)∧(b−c)+(b−d)∧(c−a)+(c−d)∧(a−b)−2∗(a∧b+b∧c+c∧a) = 0.
– (b ∧ c) ∧ (a ∧ d) + (c ∧ a) ∧ (b ∧ d) + (a ∧ b) ∧ (c ∧ d) + 2(abc) ∗ d = 0.

%15 >> (a-d)^(b-c)+(b-d)^(c-a)+(c-d)^(a-b)-2*(a^b+b^c+c^a)
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec
%16 >> v1:=(b^c)^(a^d)+(c^a)^(b^d)+(a^b)^(c^d)+2*s3p(a,b,c)*d
(bcd)*a-(acd)*b+(abd)*c-(abc)*d @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec
%17 >> Simplify(v1)
O @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec

Example 3. The following examples come from Cunningham [4].

– a ∧ (b ∧ c) + b ∧ (c ∧ a) + c ∧ (a ∧ b) = 0.
– a∧ (b ∧ (c∧ d)) + b∧ (c ∧ (d ∧ a)) + c ∧ (d∧ (a ∧ b)) + d ∧ (a∧ (b ∧ c)) =

(a ∧ c) ∧ (b ∧ d).

%18 >> a^(b^c)+b^(c^a)+c^(a^b)
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 20 msec
%19 >> a^(b^(c^d))+b^(c^(d^a))+c^(d^(a^b))+d^(a^(b^c))=(a^c)^(b^d)
T @ Boolean

Comp: 0 msec, Interp: 60 msec

Example 4. The following examples come from Patterson [9].

– (b ∧ c) • (a ∧ d) + (c ∧ a) • (b ∧ d) + (a ∧ b) • (c ∧ d) = 0.
– ((a∧b)∧ c)∧d+ ((b∧a)∧d)∧ c+ ((c∧d)∧a)∧b+ ((d∧ c)∧b)∧a = 0.

%20 >> (b^c).(a^d)+(c^a).(b^d)+(a^b).(c^d)
0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 30 msec
%21 >> ((a^b)^c)^d+((b^a)^d)^c+((c^d)^a)^b+((d^c)^b)^a
O @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec
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6 Summary

In this paper, we have presented a rule-based component-free vector algebra
package developed using the computer programming language Aldor. All the
examples we encountered in the literature are simplified to their shortest normal
forms. The key idea is to choose an appropriate data structure and a suitable set
of transformation rules. In the future, we will add more functions to the package,
for example, solving vector equations and systems of vector equations.

Acknowledgement. The authors would like to thank Dr. Marc Moreno Maza
for his helpful suggestions and the referees for their valuable comments on im-
proving this paper.
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Abstract. The development of e-Science (cyberScience, Grid, etc.) is
starting to become a reality with formalised data resources, services on
demand, domain-specific search engines, digital repositories, etc. Increas-
ingly STM1 information will be contained in compound XML documents,
representing scientific communication (articles, theses, repository entries,
etc.). In physical sciences such as chemistry, materials science, engineer-
ing, physics, earth sciences, these “datuments” [1] normally contain hy-
pertext, graphics, tables, graphs and numerical data, mathematical ob-
jects and relationships. In addition they may also contain domain-specific
content such as chemical formula and reactions, thermodynamic and me-
chanical properties, electric, magnetic and optical properties.

Among the domain-specific languages, CML (Chemical Markup Lan-
guage) is the oldest and broadest, and is now being actively used for pub-
lishing by the Royal Society of Chemistry (Project Prospect [2]) which
gives an idea of what chemistry in datuments can look like. CML has had
to develop the domain-specific objects (molecules, atoms, bonds, spec-
tra, crystallography, etc.) and the relationships between them. However,
due to the text-based nature of early XML, it has also had to design an
implement domain-independent infrastructure which can support much
of physical science. Originally called STMML [3] it supports data types
(float, integer, complex, etc.), data structures (arrays, lists, matrices,
etc.), geometrical concepts (points, planes, lines, etc.) and scientific units
of measurement. In addition CML bases much of its flexibility one user-
created dictionaries (ontologies) which are hyperlinked from objects in
the datuments.

It is now clear that the domain-independent parts of CML (and by
extension some other markup languages in physical science) are loosely
isomorphic with approaches in MathML and OMDOC. If a synthesis
can be found, then CML can happily forget about the “non-chemistry”
knowing that the mathematical and physical science community has a
general way forward. In easiest-first order, the following are suggested:

– Mathematical variables and equations in chemical documents. An
obvious challenge is that the variables represent types, often physi-
cal quantities (but also chemical objects such as atomTypes). This
would be one of the first areas to explore with publishers.

– Graphs and tables. A high proportion of graphs are functions of
one of more dependent variables against one or more independent
variables, currently supported by <table>.

1 STM: Scientific, Technical (Engineering) Medical.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 128–129, 2007.
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– Dictionaries. The CML dictionaries and OMDOC content dictionar-
ies seem fairly similar in approach.

– Mathematical relationships. A large area of physical science is based
on theoretically and experimentally validated relationships which
have been proved over many years (e.g. Maxwell’s equations in ther-
modynamics). Often a quantity can bemost easily determined bymea-
suring different ones and transforming them. However most transfor-
mations are currently hidden in procedural non-portable code and it
would be an exciting challenge to create a self-consistent declarative
model of parts of physical science. It would be very exciting to have
a discovery engine which could, on demand, decide which quantities
were deducible from which (with similarity to theorem proving).

A major challenge for distributed mathematics and science is discov-
ery through search engines. These currently work on “free text” and are
optimised to recognise strings. In a few cases domain-specific canoni-
calisations can be used (e.g. our Google Inchi [4] transforms a molec-
ular graph into a string which is recognised by search engines). How-
ever most cases require mathematical operations (arithmetic, transfor-
mations, subgraph-matching, etc.). How – and where – can these be per-
formed? A new generation of domain-independent and domain-specific
indexing and searching tools needs to be developed.

Recently CML has had to evolve a grammar to support fuzzy concepts
representing sets of molecules. These have a distinguished mathematical
history (see, e.g. enumeration of alkanes [5] and references therein). Poly-
mers and chemicals in patents (“Markush”) are often expressed in text
when a grammar would be more precise. Chemical searches are also often
expressed in a grammar and evaluation or comparison of representations
is a common activity.

The presentation will give a number of interactive demonstrations. No
chemical knowledge is required!
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Abstract. The On-Line Encyclopedia of Integer Sequences (or
OEIS) is a database of some 130000 number sequences. It is freely avail-
able on the Web (http://www.research.att.com/∼njas/sequences/) and
is widely used.

There are several ways in which it benefits research:

1. It serves as a dictionary, to tell the user what is known about a
particular sequence. There are hundreds of papers which thank the
OEIS for assistance in this way.

2. The associated Sequence Fans mailing list is a worldwide network
which has evolved into a powerful machine for tackling new problems.

3. As a direct source of new theorems, when a sequence arises in two
different contexts.

4. As a source of new research, when one sees a sequence in the OEIS
that cries out to be analyzed.

The 40-year history of the OEIS recapitulates the story of modern
computing, from punched cards to the internet.

The talk will be illustrated with numerous examples, emphasizing new
sequences that have arrived in the past few months. Many open problems
will be mentioned.

Because of the profusion of books and journals, volunteers play an
important role in maintaining the database. If you come across an in-
teresting number sequence in a book, journal or web site, please send it
and the reference to the OEIS. (You do not need to be the author of the
sequence to do this.) There is a web site for sending in “Comments” or
“New sequences”.

Several new features have been added to the OEIS in the past year.
Thanks to the work of Russ Cox, searches are now performed at high
speed, and thanks to the work of Debby Swayne, there is a button which
displays plots of each sequence. Finally, a “listen” button enables one
to hear the sequence played on a musical instrument (try Recamán’s
sequence A005132!).
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Abstract. A prototype for a web application designed to symbolically
process locus, proof and discovery tasks on geometric diagrams created
with the commercial dynamic geometry systems Cabri, The Geometer’s
Sketchpad and Cinderella is presented. The application, named LAD
(acronym for Locus-Assertion-Discovery) and thought of as a remote
add-on for the considered DGS, follows the Groebner basis method re-
lying on CoCoA and a Mathematica kernel for the involved symbolic
computations. From the DGS internal textual representation of a geo-
metric diagram, an OpenMath (i.e. semantic based) description of the
requested task is created using the elements in the plangeo OpenMath
content dictionaries. A review of the elements included in these CDs is
given and two new elements proposed, namely locus and discovery. Ev-
erything is finally thoroughly illustrated with examples. LAD is freely
accessible at http://nash.sip.ucm.es/LAD/LAD.html.

1 Introduction

The name of Dynamic Geometry Systems (DGS) is given to the family of com-
puter applications that allow exact on-screen drawing of (generally) planar ge-
ometric diagrams and, their main characteristic, the manipulation of these dia-
grams by mouse dragging certain elements, making all other elements to auto-
matically self adjust to the changes. This is also known as Interactive geometry.
Since the appearance of the French Cabri Géomètre ([15]) and the American The
Geometer’s Sketchpad ([11]) in the late 80’s, many others have been created with
slightly different functionalities (C.a.R. Euklides, Dr. Genius, Dr. Geo, Gam-
bol, GeoGebra, Geometrix, Geonext, The Geometric Supposer, GeoProof, GEUP,
GRACE, Kig, Kgeo, KSEG,...). Special mention deserve applications oriented
to the automatic proving of (Euclidean) geometric theorems where an ad-hoc
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DGS has been implemented as frontend for a symbolic prover ([9,24,10]). Being
more an input device for the prover than a final tool, these DGS have not really
left the academic circles. Among the commercial DGS it is worth mentioning the
German Cinderella ([21]) whose main technical property is the complex tracing
by which certain singularities are avoided when moving a point along a path.

From the beginning, DGS have been the paradigm of new technologies ap-
plied to Math education, area where they have found their most applications.
Their convenience in the classroom is almost unanimous among education ex-
perts. However, questions have been raised on the influence of the use of DGS
on the development of the concept of proof in school curricula ([14]). Being able
to produce a great number of examples of a configuration is usually taken as a
substitute for a formal proof in what has come to be known as a visual proof.
This is a symptom of the incompleteness of general DGS relative to extra manip-
ulation of configurations. In particular, out of the three DGS considered, only
Cabri comes equipped with some property checker, and even in that case its
numeric nature does not really provide a sound substitute for a formal proof.

1.1 Computational Abilities of DGS

To compensate the computational limitations of DGS, it seems clear that some
symbolic capabilities have to be added to DGS. There are two different ap-
proaches to implement this idea. Some systems incorporate their own code to
perform symbolic computations (e.g. [9,10]), while other systems choose to reuse
existing Computer Algebra Systems (CAS) (e.g. [1,22,24]). Both strategies have
been partially successful on addressing some of the three main issues in dynamic
geometry, namely the continuity problem, the implementation of proof and dis-
covery, and the determination of loci (see [3] for details). However, none of the
main commercial DGS has tried to add ample symbolic capabilities in its lat-
est versions. This is due in part to the very different nature of DGS and CAS.
While DGS are based on immediate interactive manipulations, CAS are based
on question/answer queries. One exception is provided by the recent Geometry
Expressions ([13]), a commercial DGS based on constraints with an integrated
symbolic kernel, that is, an interactive symbolic geometry system.

Besides the reasons mentioned above, the main problem to connect existing
DGS and CAS is the fact that different applications speak different languages.
Commercial interests, frequently at the heart of developing considerations, do
not seem to be compatible with the idea of intercommunication (see [16]).

Every Math computer application has its own way to describe and internally
process information also due to the lack of a lingua franca for computer Mathe-
matics. Not having a universally accepted way to write, store and communicate
Mathematics is also making the whole field lay behind in the IT revolution. How
much information is unavailable in practice because it is impossible to efficiently
perform a search for a Math term or expression on the Internet?

Being true that no language has been able to establish itself as the Math
language for the computer era, there are two main different, and somehow com-
plementary, candidates. On one hand there is MathML, a W3C Recommendation



First Steps on Using OpenMath to Add Proving Capabilities 133

oriented to Math presentation on the Web ([17]). It is supported by most Web
browsers and hence it is the most extended Math encoding. On the other hand
there is OpenMath, a standard for representing mathematical objects together
with their semantics ([18]). The emphasis on semantics is absolutely crucial
in Math representation and makes OpenMath objects more suitable to be ex-
changed between computer programs or stored in databases. However, the
amount of implemented OpenMath applications is very limited (see Software
and Tools section on [18]). As any new idea or trend, OpenMath has not been
free of questioning ([8]) but it is, in our opinion, a promising approach to estab-
lishing a common Math language.

In this note we present an example of DGS-CAS communication for three of
the most relevant commercial systems, namely Cabri, The Geometer’s Sketchpad
and Cinderella with OpenMath as the communicating language. The tool is a
web application programmed to symbolically process locus, proof and discovery
tasks on geometric diagrams constructed with the considered DGS. Named LAD
(acronym for Locus-Assertion-Discovery) it has been thought of as a remote add-
on for the three DGS.

2 Descriptions of Geometric Diagrams

When creating a diagram in a DGS, the user draws a static picture whose ele-
ments are sequentially defined in terms of relations of dependence with respect
to previous elements. Initially, all the elements have a concrete position on the
canvas determined by concrete numeric values (coordinates of free and semi-free
points, radius length of circles given by a radius, slope of lines determined by a
slope, etc...). But a DGS construction is a dynamic picture, it is given by an infi-
nite family of pictures parameterized by the variables associated to the starting
numeric values. If we define two static pictures in a DGS to be equivalent when
one can be dynamically modified into the other, a DGS construction can then
be identified with an equivalent class of pictures. This mathematical formalism,
clear to a qualified DGS user, can be confusing for a student. Let us consider
for instance a diagram given by the circle c1 with center at the free point A1
passing through the free point B1 and the circle c2 with center at the free point
A2 passing through the free point B2. Clearly there are four possible relative
positions for these two circles depending on the number of (real) intersection
points (see Fig. 1).

Although examples of all four possibilities are instances of the same diagram
according to the definition above, one could rightly argue that they are com-
pletely different constructions. Moreover, we could take into considerations other
aspects, such as the topological distribution of the ovals determined by the circles
and obtain even more different pictures. This shows how the concept of a DGS
diagram is elusive. The definition given by a high school student would proba-
bly differ considerably from that of an expert in Automated Theorem Proving
(ATP). The same way that Differential and Algebraic Geometry study geometric
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Fig. 1. Four equal constructions?

objects up to diffeomorphism and algebraic equivalence respectively, Dynamic
Geometry needs its own definition, which is out of the scope of this short note.

Once pointed out the ambiguity in the concept of a diagram generated by a
DGS, a brief description is given on the way the three chosen DGS describe and
store their own diagrams, and how it can be done using OpenMath.

2.1 Descriptions of Geometric Diagrams by Standard DGS

Different DGS use different ways to describe their internal data. We will focus on
the particular cases of the three systems considered, namely Cabri, The Geome-
ter’s Sketchpad (GSP) and Cinderella, which already show enough peculiarities
to be representative of the existing variety.

When creating a diagram, all three applications generate a file in the local
directory after saving the construction. The format of this file and its accessibility
are the first differences among these DGS. Cabri files (with extension .fig) are
readable as text files by just opening them with a text editor. Cinderella files
(with extension .cdy) are compressed files and they have to be uncompressed to
obtain a file readable as a text file. GSP files (with extension .gsp) are coded
and their contents not accessible. However, one can save a .gsp file as an .html
file (to be used with JAVA Sketchpad [12]) readable as a text file. It has to be
noted that the JAVA Sketchpad description of a construction does not include all
the information from the construction. For instance, labels assigned to elements
other than points are not included.

As expected, in all three cases the text describing the diagram follows the
basic ideas mentioned before. It gives an ordered list of elements described with
basic data that include the type, numeric values and parents of an element.
Auxiliary data are also specified for each element when needed. This auxiliary
data include all graphic and internal DGS codifications. The following are textual
descriptions of a line passing through two points as coded by Cabri, GSP and
Cinderella respectively

6: Line, Const: 4, 3,
{3} Line(2,1)[color(0,0,255)];
("c"):=Join("E","C");

where in the case of Cinderella, 15 additional lines with auxiliary data have been
removed.
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Note that Cabri and GSP assign a nonnegative integer to each element. This
number, besides ordering all the elements of the construction according to their
relative position in the time sequence of the construction, also serves as the
actual name of the element in all the references to it. The label that the user
can attach in Cabri and GSP to any element is only used as a decorative item,
it is never used by the applications as an identifier.

While Cabri and GSP descriptions of diagrams are based on a strict con-
structive order, a different strategy is followed by Cinderella. No numbers are
associated to the different elements in the construction and all the references
are made with (modifiable) alphanumeric labels automatically assigned by the
application. In fact, the description does not even follow the order in which the
elements where created by the user. If the two intersection points of a line and
a circle are included in a diagram at, say steps 13 and 21, the description of
both of them will be given in the same line, exactly as if they had been intro-
duced in the diagram at the same time. The elements keep, of course, the natural
parent-offspring ordering.

These few comments are enough to illustrate the variety that is found in the
ways of describing a geometric construction as we consider different DGS. At
the heart of this discussion is the ultimate goal of intercommunicating different
DGS. The situation, as we see it, makes this goal unattainable at this moment.
In this direction, it is worth mentioning the use by the recent Cabri 3D of XML
files, technology specifically oriented to the standardization in communication.

A related but slightly less ambitious general project is that of providing a way
to share repositories of constructions among DGS. This is clearly calling for a
neutral language to which all DGS could translate their diagram descriptions. As
mentioned in Sect. 1, OpenMath has all the characteristics to be that language.

2.2 OpenMath Description of Geometric Diagrams

The OpenMath representation of a mathematical structure is referred to as an
OpenMath object. Although several encodings are available (functional, SGML,
binary) the current preferred notation when describing OpenMath objects is
XML. Formally, an OpenMath object is a labelled tree whose leaves are the basic
OpenMath objects. Among these are the symbols which ultimately represent the
Math symbols. They consist of a name and a reference to an explicit definition
in an external document called a content dictionary (CD). OpenMath objects
are then built up recursively (see [18]). The following is the XML encoding of
an OpenMath object representing the line l determined by the points A and B.

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="plangeo1" name="line"/>
<OMV name="l"/>
<OMA>

<OMS cd="plangeo1" name="incident"/>
<OMV name="A"/>
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<OMV name="l"/>
</OMA>
<OMA>

<OMS cd="plangeo1" name="incident"/>
<OMV name="B"/>
<OMV name="l"/>

</OMA>
</OMA>

</OMOBJ>

presentation that can be schematically represented by

line(l,incident(A,l),incident(B,l)).

Note that this does not make a sensible diagram description since the referred
points are not described.

As illustrated in Sect. 2 the description of a diagram by a DGS contains basic
(i.e. geometric) as well as auxiliary data. The translation of the description of
a diagram given by Cabri/GSP/Cinderella to an OpenMath element has been
made to preserve only the basic data, namely the type of an element (point, line,
segment,...), its label and its defining properties. The OpenMath descriptions
given by LAD have been made, following the basic OpenMath philosophy, appli-
cation independent. Hence, although LAD has been programmed as a symbolic
prover and does not work with specific coordinates, these have been included in
the OpenMath description of free and semi-free points.

We tried to use only existing OpenMath elements when possible. The basic
elements considered came from the plangeo1 to plangeo6 content dictionaries.
In particular, the general approach of representing a diagram by an instance plus
its constraints has been followed. This structure is found in the configuration
element from the CD plangeo1.

The absence of certain natural OpenMath elements, such as the length of
a segment, has made some descriptions look a bit awkward. That is the case,
for instance, of the description of a circle defined by a point (as center) an a
segment (as radius). Given the length of the OpenMath descriptions, the reader
is referred to http://nash.sip.ucm.es/LAD/LAD.html for complete examples.

The following shows the schematic description of distance element used to
encode the circle with center C and radius given by the length of the segment
S with endpoints A and B.

distance(point(A,in(A,endpoints(S))),point(B,in(B,endpoints(S))))

3 On the plangeo Content Dictionaries

Content Dictionaries are the most important aspect of OpenMath for they define
the meaning of the objects being coded. A CD is a collection of related symbols
and their definitions encoded in an XML format. A symbol definition in an
OpenMath CD consists of a symbol name, a symbol description in plain text
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and optionally of some properties and examples of use. Collections of related
CDs are usually grouped together as CD Groups. The set of CDs managed by
the OpenMath Society and all the details about how they are used can be found
at the official OpenMath web site ([18]).

The list of CD groups grows constantly from contributors in different areas. In
particular, the plangeo CDs are part of the riaca algebra CD group developed
by the RIACA at Technische Universiteit Eindhoven with the DGS Cinderella
in mind ([19]). Besides a previous work by the authors presented at ADG 2006
([7]), as far as we know, these CDs have basically been used only by Roozemond
to implement an automatic prover for Cinderella using GAP ([23]).

Despite the intention of using only the elements defined in the plangeo CDs
to formalize the OpenMath representations needed in LAD, we found necessary
a slight modification in one definition and the inclusion of two more elements,
namely locus and discovery.

We modified the OpenMath description of the segment element in the plan-
geo2. Given only in terms of the two defining points, it did not include a name for
the segment itself. Being the cross reference a basic ingredient in a description
of a DGS configuration, we considered a slightly modified definition including a
name for the encoded segment. The following schematic descriptions of Open-
Math objects correspond to the old an new representations of the segment S
defined by points A and B:

segment(A,B) segment(S,A,B)

The absence of a denomination for the defined element does not happen only
in the case of the segment. While the OpenMath representations of line, point,
circle or conic include a name for the encoded element, such a name is missing
in the representations of, for instance, angle, midpoint or halfline.

3.1 New Elements: Locus, Discovery

The elements in the plangeo CDs are well suited to represent a geometric dia-
gram (a configuration in OpenMath terms) and the element assertion from
plangeo1 can be used to codify the request to prove a condition on a diagram.
However the plangeo CDs do not include elements to codify locus or discovery
tasks.

With respect to the locus task, two different classes of loci have been distin-
guished, namely the parametric and the implicit. We have restricted to the locus
set determined by one point in a configuration. This is clearly generalizable to
sets with several points or even higher dimensional objects.

In a geometric configuration, given a point T , dependent of a point M , which
is a point on the object a (line, circle,...), the parametric locus defined by T is the
set of points traced by T as M moves along a. The points T and M are generally
referred to as the tracer and the mover respectively. Standard DGS (such as the
three considered by LAD) come equipped with a locus function that allows the
user to visualize the plotting of a parametric locus.



138 M.A. Abánades, J. Escribano, and F. Botana

In a geometric configuration, given a point T (dependent or independent),
an implicit locus defined by T and a set C of conditions in the elements of
the configuration, is the set of points traced by T when the conditions in C
are satisfied. The point T is still referred to as the tracer in LAD although
most implicit loci are not constructible. Standard DGS (in particular the three
considered by LAD) do not come equipped with a locus function to visualize
implicit loci (see example in Sect. 5.1).

A parametric locus is an a priori object. It is determined by the relations given
before its definition. It is hence a natural object for a DGS. A sample of instances
of the mover and the plotting of the corresponding instances of the tracer are
enough to give a (numerical) representation of the locus. Let us mention that
Cabri uses these sample of coordinates to numerically produce equations of some
parametric loci.

On the other hand, implicit loci are a posteriori objects. They are determined
by extra relations imposed on the configuration elements. This does not fit the
logical ordering in standard DGS. Moreover, determining implicit loci require
symbolic computations.

Although computationally different, both loci are identical conceptually. A
locus is the set determined by the different instances of the tracer when consid-
ered all possible instances of the configuration satisfying all required conditions.
A locus, by definition, is an element in a configuration. Hence, its OpenMath
representation has been defined with a name and a reference to the tracer with
the possibility of including some extra conditions (i.e. besides those coming from
the relations among the different previous elements in the configuration). The
following are the schematic representation of the OpenMath representation of
the parametric locus a determined by the tracer point P and the implicit locus
b determined by the tracer point Q with the condition that point P3 is incident
to line L8.

locus(a,P) locus(a,P,incident(P3,L8))

A new plangeoX has been used as CD reference in the XML codification of
these elements. The authors will submit a geometry OpenMath CD after an
experimental period.

A Discovery task in ATP enquires about the necessary conditions for some
properties to hold with respect to the elements in a diagram. Being similar to
a proving task, the assertion OpenMath element has been taken as model for
the discovery element. The following is an example of the (schematic) rep-
resentation of the discovery of necessary conditions on the n elements in the
configuration for the lines L11 and L12 to be parallel and points A, B and C to
be collinear.

discovery(
configuration(element_1,...,element_n),
parallel(L11,L12),
are_on_line(A,B,C)

)
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4 LAD: Locus, Assertion Discovery

The three basic guidelines in the developing process of the tool have been the use
of CAS from standard DGS, the use of OpenMath as communication language
and the final implementation of a web accessible tool. In particular, LAD is a
web application that symbolically processes locus, proof and discovery tasks over
geometric diagrams constructed with either Cabri, The Geometer’s Sketchpad
or Cinderella. It acts as a remote plug-in for these three DGS adding symbolic
computational capabilities. From the DGS own textual representation of a geo-
metric diagram, an OpenMath description of the requested task is created using
the elements in the plangeo CDs as well as the new locus and discovery ele-
ments. This OpenMath representation of the task is then translated into a new
description only in terms of points and relations among these points. As an ex-
ample, the incidence of the point P on the line l determined by the points A
and B, is translated as aligned(P,A,B). Although the geometric diagram is
described in terms of specific numeric data, symbolic coordinates are assigned
to the points. These symbolic coordinates (variables) and the equations given by
the relations among the points provide the algebraic setting of the problem in
terms of polynomial ideals in those variables. Depending on the task requested
a different parameter elimination algorithm is applied. The answer is obtained
then in terms of equations in the appropriate variables with symbolic parameters.

Observe that this CAS-DGS communication is currently only one directional.
Making the original DGS understand the answer given by LAD is currently work
in progress.

4.1 User Interface and Architecture

Considering its natural applications in education, simplicity and ease of use were
considered basic in the design of LAD. Consequently, its interface was designed
to look like a simple web page (see Fig. 2) where the user is required to make
use of an applet and a text editor to create a text file with the description of the
task in the local directory. This file is finally uploaded to the server and a new
browser window displays the answer produced by the application.

To obtain the final description of the task from the DGS description of the
diagram, a double translating process takes place. First the original DGS dia-
gram description is processed, producing an XML codification of the OpenMath
description of the task. The task type as well as the different conditions for
the task have to be input using the applet menu. The OpenMath description of
the task is then translated into code for webDiscovery, application developed by
Botana (see [2]) whose kernel has been appropriately modified to be integrated
in LAD as the final computational tool.

LAD is based on webMathematica [25], a Java servlet technology allowing
remote access to the symbolic capabilities of Mathematica. Once the user has
created and uploaded the appropriate text file, a Mathematica Server Page is
launched, reading the file and initializing variables. An initialization file for Co-
CoA [5] containing the ideal generated by the appropriate defining polynomials
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Fig. 2. LAD user interface as a web page

is also written out, and CoCoA, launched by Mathematica, computes a Groebner
basis for this ideal. Each generator is factored (a task also done by CoCoA), and
a process of logical expansion is performed on the conjunction of the generators
in order to remove repeated factors.

The JAVA application that processes the translation from the OpenMath to
the webDiscovery description of the tasks was programmed using the RIACA
OpenMath Library 2.0 ([20]).

It is important to emphasize that all the computations done by LAD are
symbolic (i.e. number-free) so the answers to the tasks are completely general,
result of the study of deep algebraic relations using sound algorithms ([4]).

However, a diagram with many elements could result in a task with unman-
ageable computations or in an answer with long symbolic expressions. An ad-hoc
assignment of numerical coordinates to free points can solve the problem (see
example 5.1). This is a standard procedure in ATP (cf. [6]).

As mentioned in Sect. 1.1, the approach of reusing existing CAS to add compu-
tational abilities to DGS has been followed before by other authors. In particular,
the implementations in [24] and [22] lack, in our opinion, a sufficient degree of
automatism.

5 Examples

LAD has been designed with a clear scenario in mind, namely that of a student
in a Math lab working geometric experiments lead by a qualified instructor.
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Besides adding exactness and rigorous proofs to ideas and conjectures, LAD can
help illustrate subtle concepts such as symbolic equation, generic position, free
variable or semantic description. The possibility of directly manipulating the
final encoding of the task makes LAD also useful for advance college students
and ATP researchers.

The following are three examples covering all tasks managed by LAD. We
have chosen simple exercises related to well-known facts for the sake of clarity.
These examples can be easily generalized.

5.1 Locus

When experimenting with different instances of a construction, the most natural
question (when is this property true?) leads many times naturally to an implicit
locus. Consider the triangle ABT and the orthogonal projection Af of A onto
the opposite side (see the Cabri construction in Fig. 3, left). When is Af the
midpoint of that side? Or in other words: what is the locus set of points T such
that Af is the midpoint of BT ?

Fig. 3. When is Af the midpoint of BT ?

After pasting the Cabri textual description of the construction in the ap-
plet, we select Find a LOCUS from the applet menu and add the condition
Equidistance for the points Af , T and B. Finally we also have to specify
T as the tracer point. Pressing the To OM and the To wD buttons generates the
webDiscovery description of the task with symbolic variables assigned to the free
points in the construction. If we upload the .txt file with that description, the
answer given by LAD says that Af is the midpoint of the segment BT only if
T lies in a conic whose exact symbolic equation is the following:

u(1)2−2u(3)u(1)+2u(2)2−u(5)2−u(6)2−2u(2)u(4)+2u(3)u(5)+2u(4)u(6) = 0

This quadratic equation in u(1) and u(2) is in fact the general equation for
the locus set described by T considering two general points A and B. However
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this kind of equation is in general too much information for a student in a Math
lab. To simplify things we can assign numeric coordinates to the free points in
the construction as explained in Sect. 4 to obtain the answer to a convenient
particularization of the question. In particular if we assign numeric coordinates
so the vertices A and B become the points (0, 0) and (1, 0) respectively and
upload the modified file to the application, we get that T has to be in the circle
with center B and radius equal to the distance AB (see Fig. 3, right).

5.2 Assertion

The fact that the three altitudes of a triangle meet in one point is one of the first
general results that students are capable of guessing when using a DGS. To prove
this result with LAD we can construct the triangle ABC and the intersection
point P of two altitudes. We just have to construct the third altitude and ask
the tool to prove that the point P lies in it (see the GSP construction in Fig. 4,
left).

Fig. 4. Altitudes meet in one point

After pasting the GSP textual description of the construction from the .html
file in the upper left text area in the applet, we select PROVE from the applet
menu and add the condition Incidence for the point P and the line L10. Let us
recall that GSP does not keep the line labels in its .html file. The assigned name
of the last constructed altitude is L10 because it appears in the line numbered as
10 in the .html file. The name can also be looked up in an OpenMath description
of the construction (obtained by pressing the To OM button). Once the condition
to prove has been added, one just have to press the To OM and the To wD buttons
to generate the webDiscovery description of the task. Uploading the .txt file to
the application, the answer is obtained (see Fig. 4, right).

5.3 Discovery

The ideal situation when learning in an practice setting such as a Math lab is
that after careful study of a situation with several examples one is able to make
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a good guess on the condition for some property to be true. But this is not
always the case. LAD implements the idea of automatic discovery which can
lead the user through the investigation. As an example, one could be interested
in knowing the conditions for the circumcenter to lie in one side of the triangle.
To discover the necessary conditions we have to construct the triangle ABC and
its circuncenter as the intersection point O of the perpendicular bisectors of two
sides (see the Cinderella construction in Fig. 5, left).

Fig. 5. The circumcenter is incident to one side only if it is a right triangle

After pasting the Cinderella textual description of the construction (from the
file obtained after decompressing the .cdy file) in the applet, we select DISCOVER
from the applet menu and add the condition Collinearity for the points A, O
and C. Once the condition to discover has been added, one just have to press
the To OM and the To wD buttons to generate the webDiscovery description of
the task. Uploading the .txt file to the application, the answer is obtained (see
Fig. 4, right). As expected, the condition is that we have right triangle. Note
that LAD also gives the degeneracy condition A = C.

6 Conclusions and Future Work

LAD shows the possibilities of the CAS-DGS communication by successfully in-
terconnecting Cabri, The Geometer’s Sketchpad and Cinderella to Mathematica
and CoCoA. The use of a standard semantic representation of mathematical ob-
jects is, as we see it, one of the main challenges in the computer math community
today. LAD shows that OpenMath can be efficiently used to describe geomet-
ric configurations. Moreover, by choosing a ready-to-use web presentation, LAD
becomes a real available tool to any user of the three considered GDS with an
internet connection.

When processing a task, LAD makes all the details of the different transla-
tions available to the user, unlike black-box type applications. It is our opinion
that being able to manipulate the insides of the box multiply its applications in
education as well as in ATP research.
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As future work, two main aspects of LAD are under study for generalization.
First its two dimensional nature. An extension to 3D Dynamic Geometry Sys-
tems is being undertaken. This, however, requires first the definition of the three
dimensional analogues of the plangeo OpenMath CDs. The second aspect refers
to the unidirectionality of LAD. Incorporating the information provided by the
CAS in the DGS would certainly improve enormously its applications.

Acknowledgements

The authors were partially supported by UCM research groups ACEIA and DOSI
(Abánades) and research grants MTM2004-03175 (Botana) and MTM2005-02865
(Abánades, Escribano) from the Spanish MEC.

Botana was also partially funded by the Technical University of Eindhoven as
a visiting scholar during March 2004.

References

1. Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem
discovery. Computers and Education 38(1-3), 21–35 (2002)

2. Botana, F.: A Web-based intelligent system for geometric discovery. In: Sloot,
P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya,
A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 801–810. Springer, Heidelberg (2003)

3. Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a sym-
bolic approach. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763,
pp. 92–110. Springer, Heidelberg (2006)

4. Buchberger, B.: Groebner Bases: An algorithmic method in polynomial ideal the-
ory. Multidimensional Systems Theory, D. Reidel Publishing Company, pp. 184–231
(1985)

5. Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing Computations in
Commutative Algebra. Available via anonymous ftp from: cocoa.dima.unige.it

6. Chou, S.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht Boston (1988)
7. Escribano, J., Abánades, M., Valcarce, J., Botana, F.: On Using OpenMath for

Representing Geometric Constructions. In: Proc. 6th Int. Workshop on Automated
Deduction in Geometry (ADG 2006), pp. 26–30 (2006)

8. Fateman, N.: A Critique of OpenMath and Thoughts on Encoding Mathematics
(January 2001) http://www.cs.berkeley.edu/∼fateman

9. Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan
(1998)

10. http://www.geogebra.at

11. Jackiw, N.: The Geometer’s Sketchpad v 4. Key Curriculum Press, Berkeley (2002)
12. http://www.dynamicgeometry.com/javasketchpad

13. Todd, P.: Geometry Expressions: A Constraint Based Interactive Symbolic Geom-
etry System. Computeralgebra-Rundbrief, vol. 39 (2006)

14. Hoyles, C., Jones, K.: Proof in Dynamic Geometry Contexts. In: Perspectives on
the teaching of Geometry for the 21st Century, pp. 121–128. Kluwer, Dordrecht
(1998)

15. Laborde, J.M., Bellemain, F.: Cabri Geometry II. Texas Instruments, Dallas (1998)

cocoa.dima.unige.it
http://www.cs.berkeley.edu/~fateman
http://www.geogebra.at
http://www.dynamicgeometry.com/javasketchpad


First Steps on Using OpenMath to Add Proving Capabilities 145

16. http://mathforum.org/kb/message.jspa?messageID=1095184\&tstart=450
17. http://www.w3.org/Math//

18. http://www.openmath.org/

19. http://www.win.tue.nl/∼amc/oz/om/cds/

20. http://www.riaca.win.tue.nl/products/openmath/lib/index.html

21. Richter–Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cin-
derella. Springer, Berlin (1999)
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Abstract. In this paper we address the problem of reconstructing a
higher order, checkable proof object starting from a proof trace left by a
first order automatic proof searching procedure, in a restricted equational
framework. The automatic procedure is based on superposition rules for
the unit equality case. Proof transformation techniques aimed to improve
the readability of the final proof are discussed.

1 Introduction

The integration of technologies developed by the automatic theorem proving
(ATP) community with modern interactive theorem provers seems a fruitful
research objective. ATP technologies showed their effectiveness in many occa-
sions [7,17] and the lack of comfortable automation is one of the most commonly
issues reported by users of interactive theorem provers. This challenge gets even
more interesting when the target interactive theorem prover follows the inde-
pendent verification principle, building proof objects that can be validated by
third party checkers. Providing a valuable proof trace is not the main goal of
ATP systems, and even when they do, the information can be too ambiguous to
be checked by a different prover (see [5]).

Among the activities of interactive proving that one would like to be sup-
ported by powerful automation techniques a major one is rewriting. In this
paper we describe our approach to this problem in relation with the interac-
tive theorem prover Matita[1]. In particular we integrated Matita with a first
order, paramodulation[11] based solver (currently restricted to the unit equal-
ity case). The solver is able to return a trace informative enough to be read
back into a proof object of Matita, that is a term of the Calculus of Inductive
Constructions[13,21] (CIC). In this paper we focus on the information that must
be embedded in traces, on the reconstruction of typable proof objects, and finally
on the refinement of the resulting proofs to enhance readability. In particular
we prove that any equational proof based on rewriting can be transformed into
a transitivity chain, where each step is justified by a simple side argument (an
axiom, or an already proved lemma). This format is really close to the standard
mathematical display of this kind of proofs.
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The paper starts introducing the interactive theorem prover Matita and giving
an overview of the automatic procedure we implemented (Sec. 2). In particular
Sec. 2.1 describes how the notion of equality is encoded in CIC, while Sec. 2.2
and 2.3 describe the variant of the paramodulation calculus implemented, the
proof searching algorithm and the lightweight representation of proofs adopted
during proof search. A proof reconstruction procedure is then presented in Sec. 3
and its result is refined with some transformations that are detailed in Sec. 4.

We will introduce notational conventions when needed, but as a general rule
we will use a different syntax for functions living in the proof language CIC or
living in the meta level and manipulating CIC terms. Proofs will essentially be
applicative lambda terms written using the notation (f a b c), while we will write
θ(a, b, c) for functions at the meta level.

2 Automatic Proof Search Procedure Implementation

Matita is an interactive theorem prover under development at the university of
Bologna (see [1] for a description of the innovative features of the system).

Matita is based on the Curry-Howard isomorphism, adopting the Calculus of
Inductive Constructions as its logical framework.

The automatic proof search procedure is a component of Matita, but is es-
sentially orthogonal to the rest of the system. It has been extensively tested
with unit equality problems of the TPTP[18] library. The results obtained by
the procedure can be browsed on TPTP website1 (we solve 512 problems out of
700 in the standard TPTP time limit of 10 minutes).

CIC terms are translated into first order terms by a forgetful procedure that
simply erases all type information, and transforms into opaque constants all
terms not belonging to the first order framework (fixpoints, pattern matching
terms, etc.).

The inverse transformation takes advantage by the so called refiner, that is a
type inference procedure typical of higher order interactive provers.

An overview of the rules used by the solver is given in Section 2.2. These
rules are decorated with proofs; the next section gives the few notions needed to
understand the proof terms.

2.1 Rewriting in the Calculus of Inductive Constructions

In the calculus of inductive constructions, equality is not a primitive notion,
but it is defined as the smallest predicate containing (induced by) the reflexivity
principle.

Inductive eq (A : Type) (x : A) : A → Prop
def== refl eq : eq A x x.

For the sake of readability we will use the notation a1 =A a2 for (eq A a1 a2).

1 http://www.cs.miami.edu/∼tptp/
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As a consequence of this inductive definition, and similarly to all inductive
types, it comes equipped with an elimination principle named eq ind that, for
any type A, any elements a1, a2 of A, any property P over A, given a proof h of
(P a1) and a proof k that a1 =A a2 gives back a proof of (P a2).

h : P a1 k : a1 =A a2

(eq ind A a1 P h a2 k) : P a2

Similarly, we may define a higher order elimination principle eq ind r such that

h : P a2 k : a1 =A a2

(eq ind r A a2 P h a1 k) : P a1

These are the building blocks of the proofs we will generate. With this definition
of equality standard properties like reflexivity, symmetry and transitivity can be
easily proved and are part of the standard library of lemmas available in Matita.

2.2 Superposition Rules

Paramodulation is precisely the management of equality by means of rewriting:
given a formula (clause) P (s), and an equality s = t, we may conclude P (t).
What makes paramodulation a really effective tool is the possibility of suitably
constraining rewriting in order to avoid redundant inferences without loosing
completeness. This is done by requiring that rewriting always replace big terms
by smaller ones, with respect to a special ordering relation $ among terms, that
satisfies certain properties, called the reduction ordering. This restriction of the
paramodulation rule is called superposition.

Equations are traditionally split in two groups: facts (positive literals) and
goals (negative literals). We have two basic rules: superposition right and su-
perposition left. Superposition right combines facts to generate new facts: it
corresponds to a forward reasoning step. Superposition left combines a fact and
a goal, generating a new goal: logically, it is a backward reasoning step, reducing
a goal G to a new one G′. The fragment of proof that can be associated to this
new goal G′ is thus not a proof of G′ , but a proof of G depending on proof of
G′ (i.e. a proof of G′ � G).

We shall use the following notation: an equational fact will have the shape
� M : e, meaning that M is a proof of e; an equational goal will have the shape
α : e � M : C, meaning that in the proof M of C the goal e is still open, i.e. M
may depend on α.

Given a term t we write t|p to denote the subterm of t at position p, and
t[r]p for the term obtained from t replacing the subterm t|p with r. Given a
substitution σ we write tσ for the application of the substitution to the term,
with the usual meaning.

The logical rules, decorated with proofs, are the following:

Superposition left

� h : l =A r α : t =B s � M : C

β : t[r]pσ =B sσ � Mσ[R/ασ] : Cσ
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if σ = mgu(l, t|p), t|p is not a variable, lσ $ rσ and tσ $ sσ; and
R = (eq ind r A rσ (λx : A.t[x]p =B s)σ β lσ hσ) : tσ =B sσ

Superposition right

� h : l =A r � k : t =B s

� R : t[r]pσ =B sσ

if σ = mgu(l, t|p), t|p is not a variable, lσ $ rσ and tσ $ sσ; and
R = (eq ind A lσ (λx : A.t[x]p =B s)σ kσ rσ hσ) : t[r]pσ =B sσ

Equality resolution
α : t =A s � M : C

� M [refl eq A tσ/α] : C

if there exists σ = mgu(t, s); (notice refl eq A t : t =A t, being refl eq the
constructor of the equality).

The main theorem is that, given a set of facts S, and a goal e, an instance e′

of e is a logical consequence of S if and only if, starting from the trivial axiom
α : e � α : e we may prove � M : e′ (and in this case M is a correct proof term).

Simplification rules such as tautology elimination, subsumption and especially
demodulation can be added to the systems, but they do not introduce major
conceptual problems, and hence they will not be considered here.

2.3 Proof Search and Its Representation

Given the three superposition rules above, proof search is performed using the
“given clause” algorithm (see [14,15]). The algorithm keeps all known facts and
goals split in two sets: active, and passive. At each iteration, the algorithm
carefully chooses an equation (given clause) from the passive set; if it is a goal
(and not an identity), then it is combined via superposition left with all active
facts; if it is a fact, superposition right is used instead. The selected equation is
added to the (suitable) active set, while all newly generated equations are added
to the passive set, and the cycle is repeated.

As the reader may imagine a huge number of equations is generated during
the proof search process, but only few of them will be actually used to prove
the goal. Even if demodulation and subsumption are effective tools to discard
equations without loosing completeness, all automatic theorem provers adopt
clever techniques to strike down the space consumption of each equation. This
usually leads to an extensive use of sharing in the data structures, and to drop the
idea of carrying a complete proof representation in favor of recording a minimal
and lightweight proof trace. The latter choice is usually not a big concern for
ATP systems, since proofs are mainly used for debugging purposes, but for an
interactive theorem prover that follows the independent verification principle like
Matita, proof objects are essential and thus it must be possible to reconstruct a
complete proof object in CIC from the proof trace.
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In our implementation the proof trace is composed by two slightly different
kind of objects, corresponding to the two superposition steps. Superposition
right steps are encoded with the following tuple:

type rstep
def== ident ∗ ident ∗ direction ∗ substitution ∗ predicate

The two identifiers are unambiguous names for the equations involved (h and
k in the former presentation of the superposition rule), direction can be either
Left or Right, depending if h has been used left to right or right to left (i.e. if a
symmetry step has to be kept into account). The substitution and the predicate
are respectively the σ (i.e. the most general unifier between l and t|p) and the
predicate used to build the proof R (i.e. the third element applied to eq ind),
that is essentially a representation of the position |p identifying the subterm of
t that has been rewritten with r once l and t|p were unified via σ.

This representation of the predicate is not optimal in terms of space con-
sumption; we have chosen this representation mainly for simplicity, and left the
implementation of a more compact coding as a future optimization.

The representation of a superposition left step is essentially the same, but
the second equation identifier has been removed, since it implicitly refers to the
goal. We will call the type of these steps lstep.

A map Σ : ident → (pos literal ∗ rstep) from identifiers to pairs of positive
literal (i.e. something of the form � a =A b) and proof step represents all the
forward reasoning performed during proof search, while a list Λ of lstep together
with the initial goal (a negative literal) represent all backward reasoning steps.

3 Proof Reconstruction

The functions defined in Fig. 1 build a CIC proof term given the initial goal g,
Σ and Λ. We use the syntax “let (� l =A r, πh) = Σ(h) in” for the irrefutable
pattern matching construct “match Σ(h) with (� eq A l r), πh ⇒”.

The function φ produces proofs corresponding to application of the superpo-
sition right rule, with the exception that if h is used right to left and eq ind r
is used to represent the hidden symmetry step. ψ builds proofs associated with
the application of the superposition left rule, and fires φ to build the proof of
the positive literal h involved.

Unfortunately this simple structurally recursive approach has the terrible be-
havior of inlining the proofs of positive literals even if they are used non linearly.
This may (and in practice does) trigger an exponential factor in the size of proof
objects. The obtained proof object is thus of a poor value, because type checking
it would require an unacceptable amount of time.

As an empirical demonstration of that fact we report in Fig. 2 a graphical
representation of the proof of problem GRP001-4 available in the TPTP[18]
library version 3.1.1. Axioms are represented in squares, while positive literals
have a circular shape. The goal is an hexagon.

Every positive literal points to the two used as hypothesis in the corresponding
application of the superposition right rule. In this example a, b, c and e are
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φ(Σ, (h, k, dir, σ, P )) =
let (� l =A r, πh) = Σ(h) and (� t =B s, πk) = Σ(k) in
match dir with
| Left ⇒ eq ind A lσ Pσ φ(Σ, πk)σ rσ φ(Σ, πh)σ
| Right ⇒ eq ind r A rσ Pσ φ(Σ, πk)σ lσ φ(Σ, πh)σ

ψ′(Σ, (h, dir, σ, P ), (t =B s, πg)) =
let (� l =A r, πh) = Σ(h) in
match dir with
| Left ⇒ (P r)σ, eq ind A lσ Pσ πgσ rσ φ(Σ, πh)σ
| Right ⇒ (P l)σ, eq ind r A rσ Pσ πgσ lσ φ(Σ, πh)σ

ψ(g, Λ, Σ) =
let (t =B s) � = g in
snd(fold right(λx.λy.ψ′(Σ, x, y), (t =B s, refl eq A s), Λ))

τ
def== term

φ : (ident → (pos literal ∗ rstep)) ∗ rstep → τ
ψ′ : (ident → (pos literal ∗ rstep)) ∗ lstep ∗ (τ ∗ τ ) → τ
ψ : neg literal ∗ lstep list ∗ (ident → (pos literal ∗ rstep)) → τ
fold right : (lstep ∗ (τ ∗ τ ) → (τ ∗ τ )) ∗ (τ ∗ τ ) ∗ lstep list → (τ ∗ τ )

Fig. 1. Proof reconstruction

(mult b a) = c

194:(mult (mult d e) e) = d177:b = (mult c a)

52:(mult (mult d e) e) = (mult d e)

127:d = (mult d e)123:b = (mult c (mult a e))

(H3 x y z):(mult (mult x y) z) = (mult x (mult y z)) (H1 x):(mult x x) = e

58:d = (mult e (mult e d))

36:(mult e d) = (mult e (mult e d)) (H2 x):(mult e x) = x

64:(mult c b) = (mult a e)

34:(mult c d) = (mult a (mult b d))

H:(mult a b) = c

Fig. 2. Proof representation (shared nodes)

constants, the latter has the identity properties (axiom H2). The thesis is that
a group (axioms H3, H2) in which the square of each element is equal to the
unit (axiom H1) is abelian (compose H with the goal to obtain the standard
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formulation of the abelian predicate). Equation 127 is used twice, 58 is used
three times (two times by 127 and one by 123), consequently also 36 is not used
linearly. In this scenario, the simple proof reconstruction algorithm inflates the
proof term, replicating the literals marked with a dashed line.

The benchmarks reported in Tab. 1show that this exponential behavior makes
proof objects practically untractable. The first column reports the time the au-
tomatic procedure spent in searching the proof, and the second one the number
of iterations of the given clause algorithm needed to find a proof. The amount of
time necessary to typecheck a non optimized proof is dramatically bigger then
the time that is needed to find the proof. With the optimization we describe in
the following paragraph typechecking is as fast as proof search for easy prob-
lems like the ones shown in Tab. 1.As one would expect, when problems are more
challenging, the time needed for typechecking the proof is negligible compared
to the time needed to find the proof.

Table 1. Timing (in seconds) and proof size

Problem Search Steps
Typing Proof size

raw opt raw opt
BOO069-1 2.15 27 79.50 0.23 3.1M 29K
BOO071-1 2.23 27 203.03 0.22 5.4M 28K
GRP118-1 0.11 17 7.66 0.13 546K 21K
GRP485-1 0.17 47 323.35 0.23 5.1M 33K
LAT008-1 0.48 40 22.56 0.12 933K 19K
LCL115-2 0.81 52 24.42 0.29 1.1M 37K

Fortunately CIC provides a construct for local definitions LetIn : ident ∗
term ∗ term → term that is type checked efficiently: the type of the body of the
definition is computed once and then stored in the context used to type check
the rest of the term.

We can thus write a function that, counting the number of occurrences of
each equation, identifies the proofs that have to be factorised out. In Fig. 3 the
function γ returns a map from identifiers to integers. If this integer is greater
than 1, then the corresponding equation will be factorised. In the example above,
127 and 58 should be factorised, since γ evaluates to two on them, and they
must be factorised in this precise order, so that the proof of 127 can use the
local definition of 58. The right order is the topological one, induced by the
dependency relation shown in the graph.

Every occurrence of an equation may be used with a different substitution,
that can instantiate free variables with different terms. Thus it is necessary to
factorise closed proofs obtained λ-abstracting their free variables, and applying
them to the same free variables where they occur before applying the local
substitution. For example, given a proof π whose free variables are x1 . . . xn

respectively of type T1 . . . Tn we generate the following let in:

LetIn h
def== (λx1 : T1, . . . λxn : Tn, π) in
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δ′(Σ, h, f) =
let g = (λx.if x = h then 1 + f(x) else f(x)) in
if f(h) = 0 then

let ( , πh) = Σ(h) in
let (k1, k2, , , ) = πh in
δ′(Σ, k1, δ′(Σ, k2, g))

else g

δ(Σ, (h, , , ), f) = δ′(Σ, h, f)

γ(Λ, Σ) = fold right(λx.λy.δ(Σ, x, y), λx.0, Λ)

δ′ : (ident → (pos literal ∗ rstep)) ∗ ident ∗ (ident → int) → (ident → int)
δ : (ident → (pos literal ∗ rstep)) ∗ lstep ∗ (ident → int) → (ident → int)
γ : lstep list ∗ (ident → (pos literal ∗ rstep)) → (ident → int)

Fig. 3. Occurrence counting

and the occurrences of π will look like (h x1 . . . xn)σ where σ will eventually
differ.

3.1 Digression on Dependent Types

ATP systems usually operate in a first order setting, where all variables have the
same type. CIC provides dependent types, meaning that in the previous example
the type Tn can potentially depend on the variables x1 . . . xn−1, thus the order in
which free variables are abstracted is important and must be computed keeping
dependencies into account.

Consider the case, really common in formalisations of algebraic structures,
where a type, functions over that type and properties of these operations are
packed together in a structure. For example, defining a group, one will probably
end up having the following constants:

carr : Group → Type inv : ∀g : Group, carr g → carr g
e : ∀g : Group, carr g mul : ∀g : Group, carr g → carr g → carr g

id l : ∀g : Group, ∀x : carr g, mul g (e g) x = x

Saturation rules work with non abstracted (binder free) equations, thus the id l
axiom is treated as (mul x (e x) y = y) where x and y are free. If these free
variables are blindly abstracted, an almost ill typed term can be obtained:

λy :?1, λx :?2, mul x (e x) y = y

where there is no term for ?1 such that ?1 = (carr x) as required by the depen-
dency in the type of mul: the second and third arguments must have type carr
of the first argument. In the case above, the variable y has a type that depends
on x, thus abstracting y first, makes it syntactically impossible for its type to
depend on x. In other words ?1 misses x in its context.
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When we decided to integrate automatic rewriting techniques like superpo-
sition in Matita, we were attracted by their effectiveness and not in studying
a generalisation of these techniques to a much more complex framework like
CIC. The main, extremely practical, reason is that the portion of mathemati-
cal problems that can be tackled using first order techniques is non negligible
and for some problems introduced by dependent types, like the one explained
above, the solution is reasonably simple. Exploiting the explicit polymorphism
of CIC, and the rigid structure of the proofs we build (i.e. nested application of
eq ind) it is possible to collect free variables that are used as types, inspecting
the first arguments of eq ind and eq: these variable are abstracted first. Even if
this simple approach works pretty well in practice and covers the probably most
frequent case of type dependency, it is not meant to scale up to the general case
of dependent types, in which we are not interested.

4 Proof Refinement

Proofs produced by paramodulation based techniques are very difficult to un-
derstand for a human. Although the single steps are logically trivial, the overall
design of the proof is extremely difficult to grasp. This need is also perceived by
the ATP community; for instance, in order to improve readability, the TPTP[18]
library, provides a functionality to display proofs in a graphical form (called
YuTV), pretty similar to the one in Fig. 2.

In the case of purely equational reasoning, mathematicians traditionally or-
ganize the proof as a chain of rewriting steps, each one justified by a simple side
argument (an axiom, or an already proved lemma). Technically speaking, such
a chain amounts to a composition of transitivity steps, where as proof leaves we
only admit axioms (or their symmetric variants), possibly contextualized.
Formally, the basic components we need are provided by the following terms:

trans : ∀A : Type.∀x, y, z : A.x =A y → y =A z → x =A z
sym : ∀A : Type.∀x, y : A.x =A y → y =A x
eq f : ∀A, B : Type.∀f : A → B.∀x, y : A.x =A y → (f x) =B (f y)

The last term (function law) allows to contextualize the equation x =A y in an
arbitrary context f .

The normal form for equational proofs we are interested in is described by
the following grammar:

Definition 1 (Proof normal form)

π = eq f B C Δ a b axiom
| eq f B C Δ a b (sym B b a axiom)
| trans A a b c π π

We now prove that any proof build by means of eq ind and eq ind r may be
transformed in the normal form of definition 1. The transformation is defined
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Fig. 4. Natural language rendering of the (refined) proof object of GRP001-4

in two phases. In the first phase we replace all rewriting steps by means of
applications of transitivity, symmetry and function law. In the second phase we
propagate symmetries towards the leaves.

In Figure 4 we show an example of the kind of rendering obtained after the
transformation, relative to the proof of GRP001-4.

4.1 Phase 1: Transitivity Chain

The first phase of the transformation is defined by the ρ function of Fig. 5. We use
Δ and Γ for contexts (i.e. unary functions). We write Γ [a] for the application
of Γ to a, that puts a in the context Γ , and (Δ ◦ Γ ) for the composition of
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ρ(π) � ρ′(λx :C.x, π) when π : a =C b

ρ′(Δ, eq ind A a (λx.Γ [x] =B m) π1 b π2) �
trans C (Δ ◦ Γ )[b] (Δ ◦ Γ )[a] Δ[m]

(sym C (Δ ◦ Γ )[a] (Δ ◦ Γ )[b] ρ′(Δ ◦ Γ, π2)) ρ′(Δ, π1)

ρ′(Δ, eq ind r A a (λx.Γ [x] =B m) π1 b π2) �
trans C (Δ ◦ Γ )[b] (Δ ◦ Γ )[a] Δ[m] ρ′(Δ ◦ Γ, π2) ρ′(Δ, π1)

ρ′(Δ, eq ind A a (λx.m =B Γ [x]) π2 b π1) �
trans C Δ[m] (Δ ◦ Γ )[a] (Δ ◦ Γ )[b] ρ′(Δ, π2) ρ′(Δ ◦ Γ, π1)

ρ′(Δ, eq ind r A a (λx.m =B Γ [x]) π1 b π2) �
trans C Δ[m] (Δ ◦ Γ )[a] (Δ ◦ Γ )[b]

ρ′(Δ, π1) (sym C (Δ ◦ Γ )[b] (Δ ◦ Γ )[a] ρ′(Δ ◦ Γ, π2))

ρ′(Δ, π) � eq f B C Δ a b π when π : a =B b and Δ : B → C

Fig. 5. Transitivity chain construction

contexts, so we have (Δ ◦ Γ )[a] = Δ[Γ [a]]. The auxiliary function ρ′ takes a
context Δ : B → C, a proof of (c =B d) and returns a proof of (Δ[c] =C Δ[d]).
In order to prove that ρ is type preserving, we proceed by induction on the size
of the proof term, stating that if Δ is a context of type B → C and π is a term
of type a =B b, then ρ′(Δ, π) : Δ[a] =C Δ[b].

Theorem 1 (ρ′ injects). For all B and C types, for all a and b of type B, if
Δ : B → C and π : a =B b, then ρ′(Δ, π) : Δ[a] =C Δ[b]

Proof. We proceed by induction on the size of the proof term.

Base case. By hypothesis we know Δ : B → C, and π : a =B b, thus a and b
have type B and (eq f B C Δ a b π) is well typed, and proves Δ[a] =C Δ[b]

Inductive case. (We analyse only the first case, the others are similar)
By hypothesis we know Δ : B → C, and

π = (eq ind A a (λx.Γ [x] =B m) π1 b π2) : Γ [b] =B m

From the type of eq ind we can easily infer that π1 : Γ [a] =B m, π2 : a =A b,
Γ : A → B, m : B and both a and b have type A. Since Δ : B → C, Δ ◦Γ is
a context of type A → C. Since π2 is a subterm of π, by inductive hypothesis
we have

ρ′(Δ ◦ Γ, π2) : (Δ ◦ Γ )[a] =C (Δ ◦ Γ )[b]

Since (Δ◦Γ ) : A → C and a and b have type A, both (Δ◦Γ )[a] and (Δ◦Γ )[b]
live in C. We can thus type the following application.

π′
2

def== (sym C (Δ ◦Γ )[a] (Δ ◦Γ )[b] ρ′(Δ ◦Γ, π2)) : (Δ ◦Γ )[b] =C (Δ ◦Γ )[a]
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We can apply the induction hypothesis also on π′
1

def== (ρ′ Δ π1) obtaining
that is has type (Δ ◦ Γ )[a] =C Δ[m]. Since Δ[m] : C, we can conclude that

π3
def== (trans C (Δ ◦ Γ )[b] (Δ ◦ Γ )[a] Δ[m] π′

2 π′
1) : (Δ ◦ Γ )[b] =C Δ[m]

Expanding ◦ we obtain π3 : Δ[Γ [b]] =C Δ[m]
%&

Corollary 1 (ρ is type preserving)

Proof Trivial, since the initial context is the identity. %&

4.2 Phase 2: Symmetry Step Propagation

The second phase of the transformation is performed by the θ function in Fig.6.

θ(sym A b a (trans A b c a π1 π2)) �
trans A a c b θ(sym A c a π2) θ(sym A b c π1)

θ(sym A b a (sym A a b π)) � θ(π)
θ(trans A a b b π1 π2) � θ(π1)
θ(trans A a a b π1 π2) � θ(π2)
θ(trans A a c b π1 π2) �

trans A a c b θ(π1) θ(π2)
θ(sym B Δ[a] Δ[b] (eq f A B Δ a b π)) �

eq f A B Δ b a (sym A a b π)
θ(π) � π

Fig. 6. Canonical form construction

The third and fourth case of the definition of θ are merely used to drop a redun-
dant reflexivity step introduced by the equality resolution rule.

Theorem 2 (θ is type preserving). For all A type, for all a and b of type A,
if π : a =A b, then θ(π) : a =A b

Proof. We proceed by induction on the size of the proof term analysing the cases
defining θ. By construction, the proof is made of nested applications of sym and
trans; leaves are built with eq f. The base case is the last one, where θ behaves
as the identity and thus is type preserving. The following cases are part of the
inductive step, thus we know by induction hypothesis that θ is type preserving
on smaller terms.

First case. By hypothesis we know that

(sym A b a (trans A b c a π1 π2)) : a =A b
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thus π1 : b =A c and π2 : c =A a. Consequently (sym A c a π2) : a =A c
and (sym A b c π1) : c =A b and the induction hypothesis can be applied
to them, obtaining θ(sym A c a π2) : a =A c and θ(sym A b c π1) : c =A b.
From that we obtain

(trans A a c b θ(sym A c a π2) θ(sym A b c π1)) : a =A b

Second case. We know that (sym A b a (sym A a b π)) : a =A b, thus
(sym A a b π) : b =A a and π : a =A b. Induction hypothesis suffices to
prove θ(π) : a =A b

Third case. Since (trans A a b b π1 π2) : a =A b we have π1 : a =A b. Again,
the induction hypothesis suffices to prove θ(π1) : a =A b

Fourth case. Analogous to the third case

Fifth case. By hypothesis we know that

(sym B Δ[a] Δ[b] (eq f A B Δ a b π)) : Δ[b] =B Δ[a]

Thus π : a =A b and (eq f A B Δ a b π) : Δ[a] =B Δ[b]. Hence (sym A a b π) :
b =A a and

(eq f A B Δ b a (sym A a b π)) : Δ[b] =B Δ[a]

Sixth case. Follows directly from the inductive hypothesis %&

5 Conclusion and Related Works

In this paper we have presented a procedure to transform a minimal proof trace
left by an automatic proof searching procedure to a valuable proof term in the
calculus of inductive constructions. We then refined this proof object with type
preserving transformations, making it suitable for the natural language rendering
engine of the Matita interactive theorem prover.

The problem of reconstructing a proof from some sort of trace left by an
automatic prover is addressed by Hurd in [5] and by Kreitz and Schmitt in [6]
while developing JProver[16]. In the former work, Hurd has to face the prob-
lem of reconstructing a proof from the ambiguous and incomplete output of the
Gandalf[19] prover, and he solves it inferring the missing information with a
prolog-style search. On the contrary, when we wrote the automatic procedure
we had in mind that the output would have been a formal proof, thus we paid
attention in not trading the proof trace completeness down for efficiency. The lat-
ter work describes several proof reconstruction methodologies in order to obtain
natural deduction style or sequent style proofs from resolution and matrix based
proof traces. Since we restricted our automatic procedure to the unit equality
case, we do not have real clauses and we implement only a trivial subset of the
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resolution calculus with the equality resolution rule, thus these approaches do
not fit well in our setting.

There is a wide literature on the integration of automated procedures with
interactive provers, but they usually focus on slightly different aspects or drop
some of the requirements we consider essential, anyway they give good sugges-
tions on possible improvements of our work. Meng and Paulson were interested
in integrating one of the best ATP systems, Vampire[14], with Isabelle[10] and
studied a set of transformations[9,8] to encode (fragments of) the expressive HOL
logic into the first order one implemented by Vampire. Some of these techniques
could be applied in our case too, allowing us to treat a larger fragment of CIC
with our automatic procedure. Ayache and Filliâtre have integrated many ATP
systems, like haRVey[4] and CVC Lite[3] with the Coq[20] interactive theorem
prover, encoding a fragment of the logic of Coq (CIC) into the intermediate
polymorphic first order logic[2] (PFOL) logic, which is meant to be easily con-
vertible to the logics understood by the ATP systems. While the translation to
PFOL could be relevant for future improvements of our work, the rest of the
paper drops the requirement of producing proof objects, trusting the essentially
boolean answer of the ATP systems. Matita follows the De Bruijn principle, stat-
ing that proofs generated by the system should be verifiable with a small tool,
and since in general an ATP system cannot be considered small, we consider the
generation of a proof object that can be verified with a small kernel mandatory.
Consider for example that haRVey counts nearly 50,000 lines of code and CVC
Lite more then 70,000 while the kernel (type checker) of Matita only 10,000.

The main distinctive characteristic of our work is in the way we take care of the
proofs we found; first encoding them in a formal calculus, then improving them
both from a practical (space/type-checking efficiency) and an esthetical (natural
language rendering) point of view. As suggested above, a natural continuation
of this work would be to study how to treat a bigger fragment of CIC with
the automatic procedure we implemented without dropping the fundamental
requirement of being able to exhibit a valuable CIC proof term once a proof is
automatically found.
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Abstract. This paper introduces Proof General Kit, a framework for
software components tailored to interactive proof development. The goal
of the framework is to enable flexible environments for managing formal
proofs across their life-cycle: creation, maintenance and exploitation. The
framework connects together different kinds of component, exchanging
messages using a common communication infrastructure and protocol
called PGIP. The main channel connects provers to displays. Provers are
the back-end interactive proof engines and displays are components for
interacting with the user, allowing browsing or editing of proofs. At the
core of the framework is a broker middleware component which manages
proof-in-progress and mediates between components.

1 Introducing Proof General Kit

The use of interactive machine proof is becoming more widespread, and larger
and more complex formalisations are being undertaken in application areas such
as hardware or software verification, and formalisation of mathematics, even up
to formalising deep proofs of recently established results. Examples of interactive
provers include general purpose provers such as Mizar, HOL, Isabelle, PVS, Coq,
ACL2, or NuPrl, and domain-specific provers such as the Forte system [19]. Of
course, this is to name just a few systems: Freek Wiedijk’s database [26] currently
lists almost 300 systems for doing mathematics on computer! Although many
of these may be classed as small-scale experiments or obsolete, it is natural to
expect researchers to continue investigating new logical foundations, and to build
domain-specific provers for new application areas.

For interactive provers such as those mentioned, the record of instructions of
how to create the proof, or a representation of the proof itself, is kept in a text
file with a programming language style syntax. We call these files proof scripts.
About 100 systems on Wiedijk’s list are based on textual proof script input.
Each system uses its own proof script language, and while there are similarities
across languages, there are crucial differences as well, particularly concerning
the underlying logic. For large proofs, the proof scripts are themselves large: by
now there are individual developments and mathematical libraries which reach
hundreds of thousands of lines of code and represent many person-years of work.

Yet, compared with the facilities available to the modern programmer, the fa-
cilities for developing and maintaining formal proofs are lamentably poor, in gen-
eral.1 Modern software development uses sophisticated Integrated Development
1 We note a few exceptions in a related work section in the conclusions.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 161–175, 2007.
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Environments (IDEs), which support features such as automatic documentation
lookup, completion of identifiers, and integration with version control and the
build process. Modern knowledge management facilities help further: context-
aware search finds related definitions; content assistance mechanisms insert
declarations and instantiations; advanced software engineering methods like
refactoring help improve design, making large-scale structural changes easy.

One reason why these facilities have not yet been provided for theorem proving
is the fragmentation of the community across so many different systems, which
dilutes the effort available. We believe the community should invest in shared
tools as much as possible, and keep only the underlying logical proof engines as
separate, distinct implementations. Thus, we are arguing not just for exchanging
and relating mathematical knowledge between systems, provided by formats such
as OMDoc, but also for the component-based construction of proof management
environments themselves, using a uniform protocol.2

In this paper we introduce the Proof General Kit (PG Kit for short). This
is a framework for proof management, based on the PGIP protocol. We believe
that PG Kit will provide sophisticated and useful development environments for
a whole class of interactive provers, and also be a vehicle for research into the
foundations of such environments.

Outline. Sect. 2 motivates the PG Kit framework, describing the contribution of
the current Proof General system and the component architecture for the new
framework. Sect. 3 introduces the PGIP protocol, Sect. 4 describes the central
role of the broker component, and Sect. 5 describes several display components.
In Sect. 6 we conclude, mentioning future and related work.

2 Proof General Kit Architecture

The claim that we can provide a uniform framework for interactive proof seems
bold, especially considering that those provers do not just differ in their under-
lying languages, but also in their existing interaction mechanisms as well.

2.1 Proof General and Script Management

The Proof General project [2] provides evidence that at least some of our aims
are feasible. Proof General is a successful generic interface for interactive proof
assistants, where a proof script can be sent line-by-line to the prover with the
prover responding at each step. It has been adapted to a variety of provers and
is in common use for several, most notably Isabelle and Coq.

The central feature is an advanced version of script management. To inter-
actively “run” a script like Fig. 1, we send each line to the prover; thus, each
line corresponds to a prover state, and the prover’s current state always cor-
responds to one particular line of the script called the prover’s focus. Script
management divides a proof script into three consecutive regions: a part which
2 Very roughly: OMDoc is to PGIP as HTML is to HTTP.
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lemma fn1: ”(EX x. P (f x)) −→ (EX y. P y)”
proof

assume ”EX x. P (f x)”
thus ”EX y. P y”
proof

fix a
assume ”P (f a)”
show ?thesis ..

qed
qed

Fig. 1. An short example proof script in Isabelle/Isar

has been processed, a part which is currently being processed, and a part which
has not yet been processed. Proof General displays this partitioning to the user
by colouring processed text blue and busy (being-processed) text pink. Editing
is prevented in the coloured region to ensure synchronisation with the prover. A
toolbar provides buttons for navigating within the proof, moving the focus. The
navigation buttons behave identically across numerous different systems, despite
behind-the-scenes using rather different system-specific control commands.

Although successful, there are several drawbacks to the present Proof General.
Users are required to learn Emacs and tolerate its idiosyncratic UI. Developers
must contend with the Emacs Lisp API which is restrictive, often changing,
and inconsistent across the many flavours of Emacs. For configuring provers, the
instantiation mechanism has become fragile and too complex. This is because
Proof General arose by successively generalising a common basis to a growing
number of proof systems, with the design goal not to change the systems them-
selves. But this leaves the interface vulnerable to breakage by even small changes
in the prover output format, and it does not itself offer a clear API, relying on
regular expression matching of the prover output.

2.2 The Framework Architecture

Instead of trying to anticipate a range of slightly different behaviours, we propose
a uniform protocol and model of proof development which captures behaviour
reasonably common to all provers at an abstract level, and ask that each proof
system implements that. We want to generalise away from Emacs and allow
other front-ends, and possibly several at once, so that the proof progress can be
displayed in different ways, or to other users. We also want to allow connecting
to more than one prover at once, to allow easy switching between different de-
velopments and systems. We even want to allow connecting other components
that provide assistance during the proof process (e.g., for recommendation [13]
or proof planning [8]). In the end, what we need is exactly a software framework:
a way of connecting together interacting components customised to the domain.

The PG Kit framework has three main component types: interactive prover
engines, front-end display components, and a central broker component which
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Fig. 2. PG Kit Framework architecture

orchestrates proofs-in-progress. The architecture is pictured in Fig. 2. The com-
ponents communicate using messages in the PGIP protocol, described in the
next section. The general control flow is that a user’s action causes a command
to be sent from the display to the broker, the broker sends commands to the
prover, which sends responses back to the broker which relays them to the dis-
plays. The format of the messages is defined by an XML schema. Messages are
sent over channels, typically sockets or Unix pipes.

3 A Protocol for Interactive Proof

The protocol for directing proof used by PG Kit is known as PGIP, for Proof
General Interaction Protocol [4]. It arose by examining and clarifying the com-
munications used in the existing Proof General system. As we developed proto-
type systems following the ideas outlined above, the protocol has been revised
and extended to encompass graphical front-ends, a document model markup for
proof scripts, and authoring extensions [3,4,5]. PGIP is an abstraction of the
communication between provers and interfaces. It allows for prover-specific be-
haviour and syntax (e.g. in the proof scripts), but specifies an abstract model of
behaviour which all provers have to follow.

The syntax of PGIP messages is defined by an XML schema written in
RELAX NG [17]. Every message is wrapped in a <pgip> packet which uniquely
identifies its origin and contains a sequence number and possibly a referent iden-
tifier and sequence number. PGIP comprises three sub-protocols, corresponding
to the different types of components from Fig. 2:

– The prover protocol PGIPP defines messages exchanged between provers and
the broker. This includes: commands sent to the prover, which correspond
to the commands in a conventional proof script and may affect the inter-
nal (proof-relevant) state of the prover; messages from the prover in reac-
tion to these commands such as <normalresponse>, <errorresponse> or
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Display command
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Fig. 3. Message exchange in the PGIP protocol

<ready>, which reflect the internal state; and configuration messages which
describe some elements of its concrete syntax, preference settings available
to the user, or which icons to use in a graphical interface.

– The display protocol PGIPD defines messages exchanged between displays
and the broker. This includes: display commands sent from the display to
the broker, corresponding to user interaction, such as starting a prover, load-
ing a file <loadparsefile>, or editing <editcmd>; and display messages,
which contain output directed to the user, either relayed from the prover, or
generated from the broker.

– The inter-broker protocol PGIPI defines messages exchanged between differ-
ent brokers, allowing running the prover on a remote machine (see Sec. 4).

The sub-protocols are not disjoint: some prover output (e.g., <normalresponse>
or <errorresponse>) is relayed to the displays, so these messages are part of
both PGIPD and PGIPP. The broker analyses messages from the prover, and keeps
an abstract view of the internal state of the prover which behaves according to a
model described in Sect. 3.2. There is a secondary schema called PGML, for Proof
General Markup Language, used to markup messages from the prover.3

Fig. 3 shows a schematic message exchange. The pattern of exchanges between
the components is more permissive than in simple synchronous RPC mechanisms
like XML RPC or most web services. This is necessary because interactive proof
may diverge (e.g. during proof search); it is essential that feedback can be dis-
played eagerly so the user can take action as soon as possible. The message
exchange between the display and the broker is asynchronous (single request,
non-waiting multiple response): the display sends a command, and the broker
may send several responses later. The message exchange between the broker
and the prover can be asynchronous or synchronous (single request, waiting sin-
gle response). In the default asynchronous message exchange between prover
and broker (corresponding to a command that may cause a proof attempt), the
prover will send several responses, eventually followed by a <ready> message,
which signals availability of the prover to the broker.
3 A standard markup language, e.g., MathML, could be used instead, but PGML is

designed for easy support by existing systems by marking up concrete syntax.
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<opengoal name=”fn1”>lemma fn1: &quot;(EX x. P (f x)) <sym
name=”longrightarrow”>−−&gt;</sym> (EX y. P y)&quot;</opengoal>

<openblock/><proofstep>proof</proofstep>
<proofstep>assume &quot;EX x. P (f x)&quot;</proofstep>
<opengoal>thus &quot;EX y. P y&quot;</opengoal>
<openblock/><proofstep>proof</proofstep>

<proofstep>fix a</proofstep>
<proofstep>assume &quot;P (f a)&quot;</proofstep>
<opengoal>show ?thesis</opengoal><openblock/><closegoal>..</closegoal>

<closeblock/>
<closegoal>qed</closegoal><closeblock/>

<closegoal>qed</closegoal><closeblock/>

Fig. 4. A proof script in Isabelle/Isar, marked up in PGIP

On top of this exchange mechanism, interactive proof proceeds in an edit-
parse-prove cycle. The user enters a command via the display; it gets parsed
and inserted into the proof script as parsed commands; and eventually it is
evaluated, giving a new prover state. Repeating this builds up a sequence of
prover commands inside the broker interactively, which form a proof script.

3.1 Proof Scripts in PGIP

Proof scripts are the central artefact of the system. Provers usually just check
proof scripts to guarantee their correctness, but do not construct them, relying
on external tools (mostly, humans with text editors). The basic principle for
representing them in PGIP is to use the prover’s native language and mark
up the content with PGIP commands which explain the proof script structure.
Fig. 4 shows the PGIP representation of the example proof script from Fig. 1
with the structural markup, including a PGML <sym> symbol element (we
omit other PGML symbols and markup such as <whitespace> for white spaces
for brevity). Notice the named and unnamed <opengoal> elements, and the
indentation structure introduced by <openblock> and <closeblock>.

Proof scripts consist of prover commands, but not all prover commands appear
in a proof script; we distinguish between proper commands which can appear
and improper commands which must not. Proper commands are sent to the
prover in plain text, so the prover can interpret them as it would do ordinarily
when reading a file. The broker does not know how to generate the prover-
specific concrete syntax of proper commands; it is usually written directly by
the user. However, the prover can offer a configuration of prover types and prover
operations for building up commands which then enable interface features to help
the user. The operations are defined by textual substitution. A trivial example for
Isar is an operation taking an identifier id and a term string tm, and produces
the command lemma id : "tm" which opens a goal. For textual interfaces,
these operations allow a template mechanism; for graphical interfaces, they define
operations which can be invoked when the user employs certain gestures.



A Framework for Interactive Proof 167

OpenFile

OpenTheory
TheoryStep

ProofStep
UndoProofStep

OpenProof

CloseTheory
CloseFile

CloseProof
PostponeProof
GiveUpProof
AbortProof

Top Level

File Open

Theory Open

Proof Open

UndoTheoryStep

Proper vs commands.improper

Fig. 5. Proof states during development

Improper commands are only used for controlling the prover’s state, and do
not appear in the proof script being developed; examples are the three italicised
undo commands appearing in Fig. 5. Improper commands are not treated as
markup, so the prover must interpret these directly.

3.2 The Prover Protocol: Modelling the Prover State

PG Kit has an abstract model of incremental interactive proof development,
where we suppose there are four fundamental states occupied by the prover,
with transitions between the states triggered by both proper and improper prover
commands. Fig. 5 shows the states, and the commands to change between them.
The four states illustrated are:

1. the top level state where nothing is open yet;
2. the file open state where a file is currently being processed;
3. the theory open state where a theory is being built;
4. the proof open state where a proof is currently in progress.

These fundamental states give rise to a hierarchy of named items: The top
level may contain a number of files. A file contains a proof script, structured into
theories. Theories in turn may contain theory items (declarations etc.) and proofs
consisting of proofsteps. Within the fourth state, we allow arbitrary nesting (e.g.,
a proof that contains sub-lemmas).

The reason for distinguishing the states is that the undo behaviour is different
in each state, and that different commands are available in each state. In the
theory state, for example, we may issue theory steps which extend the theory,
or we may undo the additions. In the proof state, we can issue proof steps and
undo these steps, or finish the current proof attempt in a number of ways. After
finishing a proof, the history is forgotten, and we can only undo the whole proof.

This model is based on abstracting the common behaviour of many interactive
proof systems, acting as a clearly specified virtual layer that must be emulated
in each prover to cooperate properly with the broker.
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Fig. 6. Command state transitions

3.3 The Display Protocol and the Edit-Parse-Prove Cycle

The markup on a proof script makes the structure of the proof script explicit,
and splits the source code into non-overlapping text spans each containing a
prover command (see Fig. 4). Each text span has a status ranging over five
main4 possible values, shown in Fig. 6. A text starts off as unparsed, and after
parsing becomes one (or more) freshly parsed prover commands. Actual proving
consists of sending the command to the prover. While waiting for a response from
the prover, the command is being processed. Once the prover has sent a positive
answer, the command becomes processed ; on the other hand, if the prover sends
an error, the command reverts to parsed. To successfully process a command all
commands it is depending on will have to been processed first. Similarly, when
we outdate a command, all commands depending on it are outdated as well;
the difference between outdated and parsed is that outdated regions have been
successfully processed before. To edit a processed command, we have to outdate
it first. Displays can either make the outdate step explicit, requiring the user first
to outdate the text range manually, or they can perform the outdate tacitly.

The transitions between the commands refine the current script management
in Proof General. By controlling the state of text spans independently, we can
exploit a more fine-grained dependency analysis (if the prover reports the nec-
essary dependency information): to process a command we only need to process
those commands which are really needed. The broker handles all this depen-
dency analysis behind the scenes. If the prover does not provide dependency
information, the broker automatically assumes linear dependency, where every
line potentially depends on all lines that come before.

To demonstrate the edit-parse-prove cycle in action, we consider the message
exchange in a typical situation: the user requests a file to be loaded, then edits a
part of the text, and finally runs the proof. Fig. 7 shows the resulting messages
being sent between display, broker and prover. Note that the proof is “run”
by requesting a command be processed (<setcmdstatus>), which causes a lot
of other commands to be processed first. If an error occurs at some point in
this scenario, the prover sends an <errorresponse> and the broker flushes all
outstanding requests. If the error occurs during the parsing, it will insert the
4 To be precise, there are other transient states besides Being processed but they are

not distinguished to the user, so omit them from Fig. 6.
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Fig. 7. The edit-parse-prove cycle in a typical situation

corresponding text as an unparsed element into the proof script, to allow the
user to edit (and correct) it later.

4 Brokering Electronic Proof

The broker is the central middleware component of the PG Kit framework. It
gathers input from the displays, sends prover commands to the provers, han-
dles the responses and does the house-keeping, keeping track of the files and the
commands, their respective status and the dependencies between them as pro-
vided by the prover. Using this dependency information, it can translate abstract
display commands such as <setcmdstatus> into a series of prover commands.

Provers and displays are handled uniformly as components, but they differ in
their communication pattern: prover commands are sent to one specific prover,
whereas display messages are broadcast to all connected displays. For each prover
the broker models its state according to the abstract state model from Sect. 3.2.
It keeps a queue of all pending prover commands, sending the next one only
once it has received a <ready> message from the prover. If the prover sends an
<errorreponse>, the queue of pending messages is cleared, as it makes little
sense to continue. On the other hand, displays have no internal notion of the
prover state, but need to keep track of the displayed text and its state.

The broker sends parsing requests to the prover, and extracts the new com-
mands from the answer, checking that the parsing result returned by the prover
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satisfies the invariant that when we strip the markup, we get back the original
proof script; if the result fails this invariant, it inserts the dropped text. As long
as only white spaces are dropped, this does not affect the proof.

Particular attention needs be paid to the ability to interrupt a running prover.
When a prover diverges, it may not respond to messages anymore (including the
PGIP <interruptprover> message), so when running a prover as subprocess,
we send a Posix signal instead. This is not possible over a socket, so to run a
prover remotely, the broker connects to another instance of itself on the remote
machine called a proxy, using the PGIPI inter-broker sub-protocol to communi-
cate. This is also useful as broker and prover have to use the same filesystem.

The broker is implemented in Haskell (7k lines of code in 20 modules), us-
ing HaXml [25] for a well-typed embedding of the RELAX NG schema. This
smoothly extends the schema typing into the Haskell implementation, making it
impossible to send messages containing invalid XML.

5 Display Components

The display components provide the front-ends with which the user interacts.
Currently, an Emacs display and an Eclipse plugin are available.

5.1 Emacs Proof General Revisited

The Emacs display for PG Kit will eventually replace the present Proof General.
By moving complex functionality into the broker, the Elisp in Emacs can be
greatly simplified. The Emacs display may be somewhat limited in facilities, but
it has the advantage of portability, including functioning in a plain terminal.

Emacs has a built-in notion of text region which can have special properties
attached, called “spans”. Spans are used to directly capture the commands de-
scribed by the broker. Emacs keeps a record of which spans have been altered,
and automatically sends requests to the broker to re-parse them, either when
the file is saved, or during editor idle time. Additionally each span provides a
context sensitive menu to adjust its state according to the diagram in Fig. 6.
Spans which are in the “being processed” state cannot be edited, and there is
customisable protection against editing those which are in the “processed” state.
Compared with the present Emacs interface, this now allows non-sequential de-
pendencies within proof scripts, under control of the broker. However, the same
toolbar and navigation metaphor for processing the next step is still available.

5.2 Eclipse Proof General

Eclipse [20,22] is an open-source IDE and tool integration platform written in
Java. Most prominently it provides a powerful and attractive IDE for Java,
but its plugins and extension points mechanism allows great adaptability. Many
plugins are now available, supporting different programming languages, profiling
and testing tools, graphical modelling, etc.
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Fig. 8. Eclipse Proof General Display

Eclipse Proof General is a truly powerful IDE for formal proof which, we
hope, will enable a dramatic improvement in usability and productivity for proof
development. Graphical views are possible [23], but the primary mode of working
remains the editing and scripting management of proof script files.

A screenshot in Fig. 8 shows it in action. The main editor window displays the
proof script PER.thy; a tool-tip hover shows a definition under the mouse. The
Prover Output view below shows the latest subgoal message. The Problems view
(obscured) in the tab behind lists outstanding problems, such as syntax errors
or unfinished proofs. To the left of the editor window is an Outline View of the
proof script showing its structure; above that, the Proof Explorer shows proof
scripts in the present folder and indicates their status in the prover with coloured
decorators. The colouring metaphor (blue means completed, pink means busy)
is used in both of these views as well as the editor window. Above the editor,
the toolbar buttons trigger proof or undo steps by sending appropriate PGIP
instructions. On the right hand panel, the Proof Objects view allows browsing the
theories and theorems currently loaded in the running session. In the tab behind,
the standard Synchronize view (obscured) allows synchronising the development
with a version control system (e.g., CVS).

Further features include code folding to hide parts of the text (a sub-proof
in the PER.thy file is folded in), integrated Javadoc-style help, and hyperlinked
indexes for quick access to theorems, definitions and unfinished proofs. Comple-
tion is available for identifiers both found in proof script files and given in PGIP
messages from the prover containing identifier tables. Completion also provides
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support for templates and mathematical symbols which are encoded by PGML
symbols (or ASCII sequences). Two configurations are provided for symbols.
One maps character sequences into Unicode sequences for display in the text
editor (supporting provers whose syntax is restricted to poorer character sets).
The other configuration is a stylesheet which maps PGML markup into HTML
for fully-flexible output display used e.g. in the Prover Output view.

Like the revised Emacs interface described above, the Eclipse editor window
must deal with managing information gleaned from the structure of the script,
while allowing free form text edits — which can wreak arbitrary changes to the
structure. This is solved by dividing parsing into two phases. In the first phase, a
fast lexer is used to perform syntax highlighting and to break scripts into smaller
partitions as the user is typing. The fast lexer is configured for each prover
by a PGIP configuration command called <proverinfo>. This configuration
command informs the display about the keywords in the prover’s language, and
can also provides tool-tip help for commands (for example, to remind the user
of the command syntax). In the second parsing phase, we call the broker with
<editcmd> messages to obtain the PGIP mark-up structure. This can either
happen in a low-priority background thread, or with specific user commands
(such as evaluating a script).

The Eclipse PG plugin is implemented in Java (40k lines of code, 250 classes).
Support for a new language in Eclipse is not as straightforward as one might
hope, as much of the advanced functionality is still specific to Java. But, paral-
leling our own development of PGIP, the Eclipse platform is rapidly evolving to
migrate Java functionality to platform-level generic mechanisms.

5.3 Other Displays

A different kind of display is the lightweight “theorem proving desktop” provid-
ing a more abstract, less syntax-oriented interface based on direct manipulation
and supported by the visual metaphor of a notepad [10]. All objects of interest,
such as proofs, theorems, tactics, sets of rewriting rules, etc., are visualised by
icons on the notepad, and manipulated using mouse gestures. The icon is given by
the type of the object, which determines the available operations. PGIP supports
this style of GUI with the <operationsconfig> specification, which describes
prover types and operations as mentioned in Sect. 3.1, and can also include icons
and hints for selecting operations. We have implemented a prototypical graphical
display called PGWin for an earlier version of PGIP [3], where display commands
and messages were not represented in XML. It is currently being adapted to the
revised architecture, and made into a separate PGIP component.

Another display currently in development is a web-based display, which will
allow users to connect to a running broker with a web-browser, and view the
proof scripts as they are being developed. This is an example of a read-only
display, which does not provide editing facilities.
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6 Conclusions

The Proof General Kit is a framework for connecting interactive proof systems
to interface tools and other components. This paper has provided an overview;
elsewhere we provide full details including the RELAX NG schemas and protocol
descriptions [4]. Ultimately, we hope that implementers of existing proof systems
will have a compelling reason to add PGIP support to their systems to access
powerful front-ends, and we hope that implementers of new systems will now
have a clear model to follow to gain interface support with minimal effort.

At the time of writing, the broker component, the Emacs display and the
Eclipse plugin are available as beta releases. These have been developed for
the upcoming 2007 version of Isabelle, to which support for PGIP has been
added by the first author. While straightforward in principle, supporting PGIP
in Isabelle turned out to be harder than expected because of difficulties with
parsing proof scripts independently of their execution: the Isabelle code uses
functional combinators to build combined parse-execute functions that are hard
to unravel. We expect that this will usually be easier to do in other systems.

PG Kit is unique in proposing a generic framework customised for interactive
proof, although there is related work in different settings. Efforts to publish for-
malised mathematical content on the web include HELM [1] and MoWGLI [15].
The MathWeb project [12] provides a standardised interface using OMDoc [9] as
an exchange language. OMDoc elaborates the semantical content of documents,
which goes beyond the scope of PG Kit. Other systems such as MONET [14],
the MathBroker [18] and MathServe [27] have an architecture similar to ours,
but integrate fully automated provers (Otter, Spass etc.) wrapped up as web
services, with a broker orchestrating proofs between different provers with little
user interaction during the actual proof. In contrast, PG Kit is geared towards
connecting interactive theorem provers to user interfaces.

Other frameworks in theorem proving include Prosper [7], which connects
several automatic provers to an LCF core to ensure logical consistency. The
Prosper Integration Interface (PII) is similar to the low-level aspects of PG Kit,
in particular in the way in which interrupts to running components are routed.

Other interfaces similar in spirit to ours include Alcor [6], which extends the
Mizar system [24] with knowledge management services such as searching and
authoring assistance, and Plato [11], which uses TeXmacs as authoring tool for
the Omega system [21]. The architecture is somewhat similar to ours, with a
middleware component mediating between prover and interface. Unlike PG Kit,
both Alcor and Plato are geared to a specific prover.

There are many possible lines for future development. Foremost among them,
we want to use the framework to investigate foundations for Proof Engineering,
exploring an analogy with software engineering to study useful ways to support
the construction, maintenance and understanding of large proof developments.
Analogues of code browsing, refactoring, and model driven development would
all be intriguing to investigate. Because proofs (in practice) are quite different
beasts from programs, and their development is a rather different process, this
is a significant research programme.
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Another promising direction lies in pushing the generic aspects of the frame-
work, by providing extra language layers or enhancements which work for dif-
ferent systems. For example, we have already designed a generate literate style
markup or a document-driven development methodology [5]. We can also use the
broker to control proof construction and search: PGIP contains almost enough
functionality to support a tactic language at a generic level.

We welcome contact from researchers interested in working with us on future
directions or in connecting their systems to PG Kit. Please contact either of the
first two authors directly, or visit the Proof General web pages [16] for more
information and software downloads.
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Abstract. In order to foster the use of proof assistance systems, we integrated the
proof assistance system ΩMEGA with the standard scientific text-editor TEXMACS.
We aim at a document-centric approach to formalizing and verifying mathematics
and software. Assisted by the proof assistance system, the author writes her doc-
ument entirely inside the text-editor in a language she is used to, that is a mixture
of natural language and formulas in LATEX style. We present a basic mechanism
that allows the author to define her own notation inside a document in a natural
way, and use it to parse the formulas written by the author as well as to render the
formulas generated by the proof assistance system. To make this mechanism ef-
fectively usable in an interactive and dynamic authoring environment, we extend
it to efficiently accommodate modifications of notations, to track dependencies
to ensure the right order of notations and formulas, to use the hierarchical struc-
ture of theories to prevent ambiguities, and to reuse concepts together with their
notation from other documents.

1 Introduction

The vision of a powerful mathematical assistance environment that provides computer-
based support for most tasks of a mathematician has stimulated new projects and inter-
national research networks in recent years across disciplinary boundaries. Even though
the functionalities and strengths of proof assistance systems are generally not suffi-
ciently developed to attract mathematicians on the edge of research, their capabilities
are often sufficient for applications in e-learning and engineering contexts. However, a
mathematical assistance system that shall be of effective support has to be highly user
oriented. We believe that such a system will only be widely accepted by users if the
communication between human and machine satisfies their needs, in particular only if
the extra time spent on the machine is by far compensated by the system support. One
aspect of the user-friendliness is to integrate formal modeling and reasoning tools with
software that users routinely employ for typical tasks in order to promote the use of
formal logic based techniques.

One standard activity in mathematics and areas that are based on mathematics is
the preparation of documents using some standard text preparation system like LATEX.
TEXMACS [10] is a scientific text-editor in the WYSIWYG paradigm that provides pro-
fessional type-setting and supports authoring with powerful macro definition facilities
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like those in LATEX. As a first step towards assisting the authoring of mathematical doc-
uments, we integrated the proof assistance system ΩMEGA into TEXMACS using the
generic mediator PLATΩ [12]. In this setting the formal content of a document must be
amenable to machine processing, without imposing any restrictions on how the docu-
ment is structured, on the language used in the document, or on the way the document
can be changed. The PLATΩ system [11] transforms the representation of the formal
content of a document into the representation used in a proof assistance system and
maintains the consistency between both representations throughout the changes made
on either side.

Such an integrated authoring environment should allow the user to write her mathe-
matical documents in the language she is used to, that is a mixture of natural language
and formulas in LATEX style with her own notation. To understand the meaning of the
natural language parts in a mathematical document we currently rely on annotations for
the document structure that must be provided manually by the user. Although it might
still be acceptable for an author to indicate the macro-structures like theories, definitions
and theorems, writing annotated formulas (e.g. “\F{in}{\V{x},\F{cup}{\V{A},
\V{B}}}” instead of “x \in A \cup B”) is definitely not. Aiming at a document-
centric approach to formalizing mathematics, we present a mechanism that allows au-
thors to define their own notation and to use it when writing formulas within the same
document. Furthermore, this mechanism enables the proof assistance system to access
the formal content and use the same notation when presenting formulas to the author.

The paper is organized as follows: Section 2 presents the annotation language for
documents of the PLATΩ system, in particular for formulas. Inspired by notational def-
initions in text-books, we then present the means the author should have to define nota-
tions. The goal consists of starting from such notations to obtain an abstraction parser
that allows to read formulas using that notation and also a corresponding rendering
parser to render formulas generated by the proof assistance system. Section 3 describes
how the notational definitions can automatically be transformed into grammar rules
defining the abstraction and rendering parsers, which are created by a parser generator
that allows to integrate arbitrary disambiguators. Section 4 presents a basic mechanism
how to accommodate efficiently modifications of the notations. In Section 5 we extend
the basic framework to restrain ambiguities, allow for the redefinition of notations and
use notations defined in other documents. We discuss related works in Section 6 before
concluding in Section 7.

Presentational convention: The work presented in this paper has been realized in
TEXMACS. Although the TEXMACS markup-language is analogous to LATEX-macros, one
needs to get used to it: For instance a macro application like \frac{A}{B} in LATEX be-
comes <frac|A|B> in TEXMACS-markup. Assuming that most readers are more famil-
iar with LATEX than with TEXMACS, we will use a LATEX-syntax for sake of readability.

2 Towards Dynamic Notation

The PLATΩ system supports users to interact with a proof assistance system from in-
side the text-editor TEXMACS by offering service menus and by propagating changes
of the document to the system and vice versa. Mediating between a text-editor and a
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Table 1. Grammar of PLATΩ’s Formula Annotation Language

Element Arguments

\F {name}{\B?, (\F |\V |\S )� }
\B {\V+ }
\V {name, (\T |\TX |\TF )?}
\S {name}
\T {name}
\TX {(\T |\TX |\TF ), (\T |\TX |\TF ) }
\TF {(\T |\TX |\TF ), (\T |\TX |\TF ) }

proof assistance system requires to extract the formal content of a document, which is
already a challenge in itself if one wants to allow the author to write in natural language
without any restrictions. Therefore we currently use a semantic annotation language to
semantically annotate different parts of a document. The annotations can be nested and
subdivide the text into dependent theories that contain definitions, axioms, theorems and
proofs, which themselves consist of proof steps like for instance subgoal introduction,
assumption or case split. The annotations are a set of macros predefined in a TEXMACS
style file and must be provided manually by the author (see [11] for details). We were
particularly cautious that adding the annotations to a text does not impose any restric-
tions to the author about how to structure her text. Note that for the communication
with the proof assistance system, also the formulas must be written in a fully annotated
format whose grammar is shown in Tab. 1.

\F{name}{args} represents the application of the function name to the given argu-
ments args. \B{vars} specifies the variables vars that are bound by a quantifier. A
variable name is denoted by \V{name} and may be optionally typed by\V{name,type}.
A type name is represented by \T{name}. Complex types are composed using the
function type constructor → represented by \TF{type1,type2}, or the operator ×
represented by \TX{type1,type2} as syntactic sugar for argument types. Finally, a
symbolname is denoted by \S{name}. For instance, the formula x∈A∩ (B∪C) is repre-
sented by the fully annotated form \F{in}{\V{x},\F{cap}{\V{A},F{cup}{\V{B},
V{C}}}} and the quantified formula ∀x. x = x as \F{forall}{\B{\V{x}},\F{=}
{\V{x},\V{x}}}. In many cases type reconstruction allows to dertermine the type of
a variable, and therefore typing variables is optional in our system.

Currently the macro-structures like theories, definitions, theorems, and proof steps
must be annotated manually by the user. However, it is not acceptable to require to write
formulas in fully annotated form. This motivates the need for an abstraction parser that
converts formulas in LATEX syntax into their fully annotated form. Furthermore, we also
need a rendering parser to convert fully annotated formulas obtained from the proof
assistance system into LATEX-formulas and using the user-defined notation. In the future,
we plan on the one hand to combine our approach with techniques in the tradition of
using a mathematical vernacular (e.g. MATHLANG [4]) and on the other hand to use
natural language analysis techniques for the semi-automatic annotation of the document
structure, e.g. to automatically detect macro-structures.

The usual software engineering approach would be to write grammars for both di-
rections and integrate the generated parsers into the system. Of course, this method is
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highly efficient but the major drawback is obvious: the user has to maintain the grammar
files together with her documents. In our document-centric philosophy, the only source
of knowledge for the mediator and the proof assistance system should be the document
in the text-editor.

Therefore, instead of maintaining special grammar files for the parser, the idea of dy-
namic notation is to start from basic abstraction and rendering grammars for types and
formulas, where only the base type bool, the complex type constructors →,× and the
logic operators ∀,∃,λ,�,⊥,∧,∨,¬,⇒,⇔ are predefined. Based on that initial gram-
mar the definitions and notations occurring in the document are analyzed in order to
extend incrementally both grammars for dealing with new symbols, types and opera-
tors. The scope of a notation should thereby respect the visibility of its defining symbol
or type, i.e. the transitive closure of dependent theories. Finally, all formulas are parsed
using their theory specific abstraction parser.

Notations defined by authors are typically not specified as grammar rules. Therefore,
we first need a user friendly WYSIWYG method to define notations and to automati-
cally generate grammar rules from it. Looking at standard mathematical textbooks, one
observes sentences like “Let x be an element and A be a set, then we write x ∈ A, x
is element of A, x is in A or A contains x.”. Supporting this format requires the ability
to locally introduce the variables x and A in order to generate grammar rules from a
notation pattern like x ∈ A. Without using a linguistic database, patterns like x is in A
are only supported as pseudo natural language. Beside that, the author should be able
to declare a symbol to be right- or left-associative as well as precedences of symbols.

We introduce the following annotation format to define the operator ∈ and to intro-
duce multiple alternative notations for ∈ as closely as possible to the textbook style.

\begin{definition}{Predicate $\in$}

The predicate \concept{\in}{elem \times set \rightarrow bool}

takes an individual and a set and tells whether that

individual belongs to this set.

\end{definition}

A definition may introduce a new type by \type{name} or a new typed symbol
by \concept{name}{type}. We allow to group symbols to simplify the definition
of precedences and associativity. By writing \group{name} inside the definition of
a symbol, this particular symbol is added to the group name which is automatically
created if it does not exist. Any new concept is first introduced as a prefix symbol. This
can be changed by declaring concept specific notations.

\begin{notation}{Predicate $\in$}

Let \declare{x} be an individual and \declare{A} a set,

then we write \denote{x \in A}, \denote{x is element of A},

\denote{x is in A} or \denote{A contains x}.

\end{notation}

A notation may contain some variables declared by \declare{name} as well as
the patterns written as \denote{pattern}. Furthermore, by writing \left{name} or
\right{name} inside the notation one can specify a symbol or group of symbols to be
left or right associative. Finally, precedences between symbols or groups are defined by
\prec{name1,...,nameN}, which partially orders the precedence of these symbols
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Fig. 1. A nnotated TEXMACS document with dynamic notation in text mode

and groups of symbols from low to high. Please note that a notation is related to a
specific definition by refering its name, in our example Predicate $\in$.

Fig. 1 shows how the above example definition and notation appear in a TEXMACS
document. Using a keyboard shortcut the author can easily switch into a so-called “box-
mode” that visualizes the semantic annotations contained in the document (cf. Fig. 2,
p.181). The author is free to develop the document in either view.

3 Creating Parsers from User-Defined Notations

We first present how the grammar rules for abstraction and rendering are obtained
from a document and then briefly describe the parser generator that is a slight variant
of standard implementations.

3.1 Obtaining the Grammar Rules

Starting the processing of a semantically annotated document, as for example the doc-
ument shown in Fig. 1, all surrounding natural language parts in the document are
removed and the abstraction and rendering parsers and scanners are initialized with the
initial grammars for types and formulas. The grammar rules can be divided into rules
for types, symbols and operator applications. The syntax of the rules is

NONTERMINAL ::= (TERMINAL|NONTERMINAL)+ --> PRODUCTION

and is best explained using an example rule:
APPLICATION ::= FORMULA.1 "\wedge" FORMULA.2

--> \F{and}{FORMULA.1, FORMULA.2}
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Fig. 2. Annotated TEXMACS document with dynamic notation in box mode

This is a rule for the non-terminal symbol APPLICATION used for any kind of appli-
cation of an operator. If it could successfully recognize two chunks of text in the class
of FORMULA and that are separated by "\wedge", it substitutes the obtained results
for FORMULA.1 and FORMULA.2 in \F{and}{FORMULA.1, FORMULA.2} to create the
parsing result.

The goal of processing the document is to produce a set of grammar rules for the
respective grammars from the notational definitions given in the text. A top-down ap-
proach, that processes each definition or notation on its own, extending the grammars
and recompiling the parsers before processing the next element, is far too inefficient for
real time usage due to the expensive parser generation process1. The following proce-
dure tries to minimize the amount of parser generations as much as possible.

Definitions Notations Document

scanning

symbols
base types

adding terminals

scanning

operators

adding rules

parsing

1 The parser generator is currently implemented in Scheme to be part of TEXMACS and is not
compiled. This causes, for instance, the parser generation for the example document to take
≈ 1min.
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1. Phase: All definitions are processed sequentially. For each definition the name of
the introduced type or symbol is added to both grammars.

2. Phase: All notations are processed sequentially. For each notation the introduced
patterns are analyzed to generate rules for both grammars.

3. Phase: Abstraction and rendering parsers are rebuilt and all formulas are processed.

Processing Definitions: A definition introduces either a type by \type{name} or a
symbol by \concept{name}{type}. In both cases, the name is added as terminal to
the abstraction scanner (if not yet included). Furthermore, we generate a fresh internal
name which will be the name of the type (or symbol) communicated to the proof assis-
tance system. The reason for that is that name can be in a syntax not accepted by the
proof assistance system. The internal name is alphanumerical and is added to the ren-
dering scanner. Then we extend the abstraction grammar by a production rule for types
(or symbol) that converts name into that internal name and vice-versa for the render-
ing grammar. Overloading of symbol names is only allowed if their types are different.
Please note that the scanner has always to be rebuilt when a new terminal is added to
the grammar.

Example 1. In the definition of ∈ (p.179) we have the following symbol declaration:
\concept{\in}{elem \times set \to bool}. The name is \in and assume the
internal name being in. These are added to the scanners. Furthermore the following
rules are added to the abstraction and rendering grammars respectively:

– SYMBOL ::= "\in" --> "in" is added to the abstraction grammar
– SYMBOL ::= "in" --> "\in" is added to the rendering grammar

The type information in the symbol declaration is only processed in the third phase
because we first have to collect all type declarations. This also complies with future
extensions towards dependent types. Our system currently supports only simple types.

Processing Notations: A notation defines one or more alternative notations for some
symbol. The author can introduce local variables by\declare{x1}, . . . ,\declare{xN}
and use them in the patterns defining the different notations: \denote{pattern1}, . . . ,
\denote{patternM}.

Example 2. As an example consider our running example from p. 179:

Let \declare{x} be an individual and \declare{A} a set,
then we write \denote{x \in A}, \denote{x is element of A},
\denote{x is in A} or \denote{A contains x}.

We impose that the ordering in which the variables are declared by \declare complies
with the domain of the associated operator, i.e. x is the first argument of \in and A the
second.

First of all, the abstraction scanner is locally extended by the terminals for the local
variables x1, . . . , xn. Then each notation pattern is tokenized by the scanner, that returns
a list of terminals including new terminals for unrecognized chunks. For instance, in our
example above the scanner knows the terminals for the local variables x and A when
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tokenizing “x is element of A”. The unknown chunks are is, element and of,
that are added on the fly. This behavior of the scanner is non-standard, but is an essential
feature to efficiently accommodate new notations. More details about the scanner are
presented at the end of this section.

A notation pattern is only accepted if all declared argument variables are recognized
by the scanner, namely all x1, . . . , xn occur in the pattern. For every notation pattern,
the abstraction grammar is extended by a production rule for function application that
converts the notation pattern into the semantic function application with respect to the
argument ordering. To this end we must modify the pattern by replacing the occur-
rences of the local variables by the non-terminals FORMULA.1 . . .FORMULA.N and add
the abstraction grammar rule

APPLICATION ::= pattern1’ --> \F{f}{FORMULA.1, ..., FORMULA.N}

where pattern1’ is the modified pattern.
For instance, the above pattern [x "is" "element" "of" A] is transformed into

[FORMULA.1 "is" "element" "of" FORMULA.2] and we obtain the following
grammar rule:

APPLICATION ::= FORMULA.1 "is" "element" "of" FORMULA.2
--> \F{f}{FORMULA.1, FORMULA.2}

For the rendering grammar we have the choice which pattern to use to render the
terms. We currently just take the first possibility. The rendering grammar is then ex-
tended by the production rule

APPLICATION ::= \F{f}{FORMULA.1, FORMULA.2} --> pattern1’

For our running example we get the rendering grammar rule

APPLICATION ::= \F{f}{FORMULA.1, FORMULA.2}
--> FORMULA.1 "is" "element" "of" FORMULA.2

Note that the notation pattern can permute the arguments of the symbol, as would be
the case when using the pattern [A contains x]. All abstraction grammar rules of a
symbol are grouped together in order to support dependency tracking.

Additionally the author can define the symbol name to be left- or right-associative
by \left{name} or \right{name} as well as the precedence of operators by using
\prec{name1},. . .{nameN}where namei is the symbol name given in the definitions.
This declares the relative precedence of these symbols, where namei is lower than
name(i+1).

Processing Formulas: The generated abstraction parser is finally used to parse the type
information in symbol declarations and all formulas. The parser returns the fully anno-
tated version of the types and formulas and also the list of grammar rules used. These
rules are stored along with the type or formula and can serve to detect dependencies be-
tween definitions, notations and formulas. When the abstraction parsing process returns
more than one possible reading, the author must advise which possibility is retained.
How these situations can be reduced to a minimum is discussed in the next Section and
in Section 5.
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The rendering parser is used to convert fully annotated formulas generated by the
proof assistance system into LATEX formulas for the text-editor. Again the grammar
rules used are saved to allow for tracking the dependencies.

The Modified Scanner: The presented procedure to analyze the patterns in notational
definitions makes extensive use of a modified scanner algorithm that returns all tokens
including unknown chunks. The scanner has been implemented such that it guarantees
the tokenizing of the longest possible prefixes. A hard wired scanner couldn’t be used
because the alphabet of the language is unknown. By using the standard scanner gener-
ation algorithm described in [14] a deterministic finite automaton is directly generated
out of the given grammar without generating a non-deterministic finite automaton. Fur-
thermore, the scanner can be built and used independently of the parser. Due to the
small size of the automaton, the generation of a scanner is relatively fast with respect to
grammar extensions.

3.2 Generating the Abstraction and Rendering Parsers

In this section we describe the parser generator used to create the abstraction and ren-
dering parser from the collected grammar rules. The main features are that it returns all
possible readings that are due to ambiguities in the grammar and returns for each read-
ing the list of grammar rules used. In order to eliminate possible but incorrect readings
as early as possible, an external function can be specified that is called at runtime to
eliminate ambiguities.

The LALR parsers are generated using well-known algorithms [13,14] together with
the usual action- and goto-tables. Since we don’t restrict our input grammar too much,
i.e. we allow also non-LALR grammars, we have to disambiguate the input grammar
and provide a handling for non resolvable ambiguities. The disambiguation of the gram-
mar is performed using standard methods from the BISON system2. In case there are still
ambiguities remaining in the grammar, the parser allows to define an external callback
function that is used at runtime to rule out possible readings that result from ambiguities.
Thus it is possible to integrate a so-called “refiner” [3], which uses type reconstruction
to filter the well-typed readings from all alternatives. Furthermore, since we are in an
interactive setting, we could ask the user to resolve the remaining ambiguities in con-
trast to situations where there is no possibility of user feedback. However, that has still
to be implemented in the PLATΩ system. If no external callback is defined, the parser
splits itself by default into multiple subparsers, such that all possible readings are re-
turned at the end. It has to be mentioned that the runtime of a splitted parser increases
exponentially if the ambiguities are not completely removed. Since the formulas that
need to be parsed in practice are usually not too large, we don’t think this really poses
a problem.

4 Management of Change for Notations

The abstraction parser constructed so far is for one version of the document. When the
author continues to edit the document, it may be modified in arbitrary ways, including

2 http://www.gnu.org/software/bison/



Supporting User-Defined Notations When Integrating Scientific Text-Editors 185

Fig. 3. Modified TEXMACS document with dynamic notation in text mode

the change of existing definitions and notations. Before the modified semantic content
of the document is uploaded into the proof assistance system, we need to recompute the
parsers and parse the formulas in the document. Always starting from scratch following
the procedure described in the previous sections is not efficient and may jeopardize the
acceptance by the author of the system if that process takes too long. Therefore there is
a need for management of change for the notational parts of a document and those parts
that depend on them. The management of change task has two aspects:

1. First, we must determine any modifications in the notational parts.
2. Second, we must adjust only those parts of the grammar that are affected by the

determined modifications, adjust the parsers accordingly and then re-parse the for-
mulas of the document.

Determining changes: Using the procedure from Section 3, we re-process all defini-
tions and notations of the document and obtain a new set of grammar rules for each
defined symbol. By caching these sets of rules for each symbols, we can determine how
the grammar has changed using a differencing mechanism.

Adjusting the scanner and the parser: If the modification of the grammar is non-
monotonic, i.e. some rules have been removed or changed, we currently have to re-
compute the whole scanner and the parser from scratch using the procedure from Sec-
tion 3.2. This is for instance the case if we change a notation for some symbol, e.g. if
we replaced “A ⊂ B” by “B ⊃ A”, but not if we add an additional alternative notation
for a symbol, like allowing “A is subset of B” in addition to “A⊂ B” as shown in Fig. 3.

If the grammar is simply extended, we can optimize the creation of the new parser
(recreating the scanner is fast anyway and there is no need to optimize that). In this case
we can reuse our previous parser and extend it using a variant of the standard parser
generation algorithm (cf. [13], p. 138ff.): Aside from the action- and goto-tables on
which the parser operates, we also have access to the states of the automaton. Storing
these data is expensive but enables the extension of the automaton. We first compute
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the closure of the start-state and then apply the standard algorithm with the states of the
previous automaton. The computation of the algorithm produces either already existing
states, modifications of existing states or completely new states. Using the identifier
of a state and the entries in the goto-tables we determine if we have to create a new
state or only modify an existing state. In case we have an existing, unmodified state,
the algorithm returns immediately. Otherwise, we have to re-compute the automaton
for the changed/new state. If an existing state is changed, then we must reuse the same
identifier as before for the entries in the goto-tables, in order to guarantee the soundness
of the transitions for those states that did not change.

Example 3. In our running example we add an additional alternative notation for the
symbol ⊂, i.e. we allow the notation “A is subset of B” in addition to “A ⊂ B”. As-
suming the internal name for this symbol is subset, the following rule is added to the
abstraction grammar:

APPLICATION ::= FORMULA.1 ‘‘is’’ ‘‘subset’’ ‘‘of’’ FORMULA.2
--> \F{subset}{FORMULA.1, FORMULA.2}

Re-parsing and re-rendering of formulas: Once the parser has been adjusted we need
to re-parse those formulas the author has written or changed manually, e.g. the formula
∀U,V. (U is subset o f V ) ⇔ (∀x. (x is in U) ⇒ (V contains x)) in the axiom of Fig. 3.
Furthermore, we have to re-render those formulas that were generated by the proof
assistance system. To this end we store the following information on formulas in the
document: for each formula we have a flag indicating if it was generated by the proof
assistance system, the corresponding fully annotated formula, and the set of grammar
rules that were used for parsing or rendering that formula:

– If the formula was written by the author, the associated fully annotated formula and
the grammar rules are the result of the abstraction parser.

– If a formula was generated by the proof assistance system, that formula is the result
of rendering the fully annotated formula obtained from the proof assistance system.
The stored grammar rules are those returned by the rendering parser.

Note that we do not prevent the author to edit a generated formula. As soon as the author
edits such a formula, the flag attached to the formula is toggled to “user” and the cached
fully annotated version and grammar rules are replaced during the next abstraction
parsing of the formula.

The stored information is used to optimize the next parsing or rendering pass over
the document: A formula is only parsed from scratch if at least one of the grammar rules
used has been modified or deleted, or if either the user or the proof assistance system
has changed the formula or the fully annotated formula.

This provides the basic mechanism that allows the author to define in a document
her own notation that is used to extract the formal semantics, and that efficiently deals
with modifications of the notation.

5 Ambiguities, Dependencies and Libraries

In order to enable a document-centric approach for formalizing mathematics and soft-
ware, the added-values offered by the authoring environment must outweigh the
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additional burden imposed to the author compared to the amount of work for a non-
assisted preparation of a document. In the following we present techniques to reduce
the burden for the author by exploiting the theory structure contained in a document to
reduce the ambiguities the author would have to deal with and also support the redefini-
tion of notations. With respect to added-values, we provide checks if a notation is used
before it has been introduced in a document and, most importantly, how we support an
author to build on formalizations contained in other documents.

Ambiguities: The abstraction parser returns all possible readings and during the parsing
process can try to make use of type-checking provided by the proof assistance system
to eliminate possible readings that are not type-correct. It requires to provide type-
information that depends on the context in which a formula is parsed, but even then
it will require some amount of automated type-reconstruction. Therefore, there may
always be situations in which we obtain more than one parsing result which requires the
user to inspect the different possibilities and select the right one by menu interaction in
the text-editor.

The logical context of a formula is determined by the theory it occurs in: The dif-
ferent parts of a document must be assigned to specific theories. New theories can be
defined inside a document and build on top of other theories. The notion of theory is
that of OMDOC [5] respectively development graphs [6]. One way to resolve an arising
ambiguity is to provide the context of a formula to the refiner. The other possibility con-
sists of having different parsers for different theories, hence avoiding some ambiguities
that would arise when sticking to have a single parser.

Example 4. Consider a theory of the integers with multiplication with the notation
“x× y” and a completely unrelated theory about sets and Cartesian products with the
same notation. This typically is a source of ambiguities that would require the use of
type information to resolve the issue. Note that standard parser generators would not
support the definition of two grammar rules that have the same pattern but different
productions as would be necessary in this case. Using different parsers for different
theories completely avoids that problem. However, when theories with overloaded no-
tations are imported by another theory, e.g. a theory of Cartesian products of sets of
integers, ambiguities may only be resolved using type information or user interaction.

From these observations we decided to not have a single parser for a whole document,
but to exploit the theory structure contained in the document and allow for one parser for
each theory. This entails that if we have a theory T that is included into two independent
theories T1 and T2, then there is a parser for all three of them. Note that we could only
have parsers for T1 and T2 and use either one when parsing a formula in the theory T .
On the one hand, this would be more efficient for changes because we need only to
maintain the parsers for T1 and T2, but on the other hand this would prevent the user to
redefine in the context of say T1 the notation for some symbol inherited from T , which
is something quite common (and discussed in the next paragraph). Nevertheless, the
drawback of our approach is that if some notation inside T is changed or added, all
three dependent parsers must be adjusted rather than only two.

In that structured theory approach for parsers, the grammar of a parser for some
theory consists of all rules obtained from notations for each symbol that is imported
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in that theory. The management of change mechanism from Section 4 is adapted in a
straight-forward manner.

Redefining Notations: When importing a theory, we want to reuse the formal content,
but possibly adapt the notation used to write formulas. This occurs less frequently inside
a single document, but occurs very often when using a theory formalized in a different
document. Since we linked the parsing (and hence the rendering) to the individual the-
ories, we allow to redefine notations for symbols inherited from other theories. The
grammar rules for a parser are determined by including for each imported symbol that
notation that is closest in the import hierarchy of theories. If there are two such theo-
ries3, a conflict is raised and the author aksed for advise which notation to use.

Dependencies: A parser and the associated renderer are attached to a theory and each
position in the document belongs to a theory. Therefore, it is possible that within a spe-
cific theory, a formula uses the notation of some symbol although the definition of that
notation only occurs afterwards in the document. We notice such situations by compar-
ing the position in the document where grammar rules are defined and where they have
been used to parse a formula. If we determine such a situation, we notify the author.
The same problem can occur when rendering a formula: If the proof assistance system
generates a formula with some concept c at a position that precedes the definition of the
notation for c (but still in the same theory), the renderer uses the grammar rules before
they are actually defined in the document. Sometimes the proof assistance system has
no choice about where that formula is included: for instance if some proof steps are
inserted into an existing partial proof that occurs before the definition of the notation.
In other situations, for instance if the proof assistance system has used an automated
theory exploration system4 to derive new properties, we could try to determine an ap-
propriate insertion position for these lemmas by inspecting the grammar rules used for
rendering. However, our impression is that most authors would be upset if their docu-
ment is rearranged automatically. Therefore we prefer to leave it to the user to move the
text parts including surrounding descriptions into the appropriate places.

Note that another, much simpler dependency is that between the definition of a con-
cept and the definition of its notation, that should not occur before the definition in the
text. In that case we also simply notify the author.

Libraries: A library mechanism is the key prerequisite to support the development of
large structured theories. We carry over that concept to the document-centric approach
we are aiming at by extending the citation mechanism that is commonly used in docu-
ments. PLATΩ provides a macro to cite a document semantically, i.e. it will not only be
included in the normal bibliography of the document, but the formalized content of the
document is included. Currently, the document must be present in the file system and
is included when the macro is evaluated and the process is recursive. Aside from the
extracted formalizations that are sent to the proof assistance system to setup the back-
ground for the current document, we extract the notations contained in that document.
Importing a theory defined in a semantically cited document into a theory of our current

3 The theories can form an acyclic graph which may lead to a Nixon diamond scenario when
determining grammar rules.

4 For instance, MATHSAID [9] is connected to ΩMEGA.
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document, allows to determine the set of grammar rules using the same mechanism as
described above for structured theories. Furthermore, since we allow the redefinition
of notations, the author can redefine the notation for the concepts imported from cited
documents, in order to adapt it to her preferences.

6 Related Work

Supporting specific mathematical notations is a major concern in all proof assistance
systems. Wrt. to supporting the definition of new notations that are used for type-
setting, the systems ISABELLE [7] and MATITA [2] are closest. ISABELLE comes with
type-setting facilities of formulas and proofs for LATEX and supports the declaration of
the notation for symbols as prefix, infix, postfix and mixfix. Furthermore, it allows the
definition of translations which are close to our style of defining notations. The main
differences are: the notations are not defined in the LATEX document but have to be
provided in the input files of ISABELLE. Due to the batch processing paradigm of IS-
ABELLE, there are no mechanisms to efficiently deal with modifications of the notation,
which is crucial in our interactive authoring environment.

In the context of MATITA Padovani and Zacchiroli also proposed a mechanism of
abstraction and rendering parsers [8] that are created from notational equations which
are comparable to the grammar rules we generate from the notational definitions. Their
mechanism is mainly devoted to obtain MathML representations [1] where a major
concern also is to maintain links between the objects in MathML to the internal objects.
Similar to ISABELLE, the notations must be provided in input files of MATITA that are
separate from the actual document. Also, they do not consider the effect of changing
the notations and to efficiently adjust the parsers.

7 Conclusion

In order to enable a document-centric approach for formalizing mathematics and soft-
ware, the added-values offered in an assisted authoring environment must outweigh the
additional burden imposed to the author compared to the amount of work for a non-
assisted preparation of a document. One step in that direction is to give the freedom to
define and use her own notation inside a document back to the author. In this paper we
presented a mechanism that enables the author to define her own notation in a natural
way in the text-editor TEXMACS while being able to get support from the proof assis-
tance system, such as type checking, proof checking, interactive and automatic proving,
and automatic theory exploration. The notations are used to parse formulas written by
the user in the LATEX-style she is used to, as well as to render the formulas produced by
the proof assistance system. Ambiguities are reduced by allowing one parser for each
defined theory in the document and by integrating type-checking to resolve remaining
ambiguities during the parsing process. The structure of theories also form the basis
to include formalizations and notations defined in other documents. Finally, we de-
veloped maintenance techniques to accommodate the interactive and dynamic process
of preparing a document by simultaneously reducing the amount of work for the user.
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Future work will consist of supporting LATEX-documents and using OMDOC to ex-
change the formalized content and notations contained in documents of different
formats.
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14. Wilhelm, R., Maurer, D.: Übersetzerbau - Theorie, Konstruktion, Generierung, 2. Auflage.
Springer, Heidelberg (1997)

http://www.w3.org/TR/MathML2


Mizar Course in Logic and Set Theory

Ewa Borak and Anna Zalewska

University of Bialystok,
Institute of Computer Science, Bia�lystok, Poland

ewag@ii.uwb.edu.pl,

zalewska@uwb.edu.pl

Abstract. From the very beginning of the development of the Mizar

system experiments with using Mizar as a tool for teaching mathemat-
ics have been conducted. Numerous organized courses were based on
different versions of the system: starting from the first implementation
of its processor, through Mizar-MSE, Mizar–4 and PC–Mizar up till
its present version. Now Mizar with its mathematical library gives us
quite new didactic possibilities.

The purpose of this paper is to present a certain course on logic and
set theory offered by our Institute for freshman students. The course
employs Mizar as the main tool of instruction. In the paper we discuss
the organization of this course and describe some examples of students’
tasks. Finally, some conclusions and remarks are given.

1 Introduction

The Mizar system1 is a proof–assistant based on classical logic, i.e. it is a
computer system for representing mathematical proofs in such a way that the
computer checks their correctness. During the development of the system a lot
of experiments concerning education were conducted. We would like to recall
here only a few of them.

The first implementation of the Mizar processor was used to teach proposi-
tional logic in Poland (1975–1976). Next some didactic experiments with Mizar–

MSE [9] were conducted. A correspondence course based on it was run for
10 months (September 1983 through June 1984) by a popular Polish science
monthly Delta [2,5], a magazine aimed at secondary school students. Mizar–

MSE was also used to teach elementary logic in Bialystok and foundations of
geometry at the Departament of Mathematics at Warsaw University [8,11]. In
1987–88 a richer version of Mizar (called Mizar–4) was applied in teaching
“Introduction to mathematics” and “Lattice theory” at the Bialystok Branch of
Warsaw University. PC–Mizar (the early 90s) was used in teaching topology.
Five scripts [1] with exercises and their solutions (written in the Mizar language
and checked by the computer) were created and used in teaching topology the
traditional way (the laboratory classes were not possible to conduct at that time).

1 http://mizar.org

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 191–204, 2007.
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Mizar was also used for teaching introductory logic courses at many universi-
ties in other countries, e.g.: USA (by A. Trybulec), Canada (by P. Rudnicki),
Japan (by Y. Nakamura), Belgium and has been used as a formal environment
to prepare lots of diploma theses, from a bachelor degree to PhD.

Now Mizar with its mathematical library (MML) provides us with new chal-
lenges and gives us quite new didactic possibilities.

During the spring semester of the academic year 2003–2004, Mizar was ap-
plied for the first time to conduct a course in “Formalization of Mathematics”[6].
During the next two academic years two courses (each year) were conducted with
the aid of the system: ”Introduction to Logic and Set Theory” and ”Formaliztion
of Mathematics” both as an obligatory part of the curriculum for all first-year
students of our Institute2.

It seems that our teaching experience allowed to work out a certain method
of conducting such courses. The method and its results are presented in the next
sections of this paper concentrating on the Mizar course in logic for beginners. In
the current academic year the course was conducted in the autumn semester. It
consisted of 30 hours of lecture (given by A. Trybulec) and 30 hours of laboratory
classes organized in 6 groups, each group led by a different teacher (A. Trybulec,
A. Naumowicz, A. Korni�lowicz, R. Milewski and the authors), with an average
number of 10 students in each group.

2 Mizar Course for Beginners

2.1 Organization of the Course

Before conducting any Mizar course it is necessary to make some didactic deci-
sions. One can present them in the form of questions as follows.

What are the main goals of the course? As far as the course in logic for
beginners is concerned its main goals are:

– developing students’ skills in deductive reasoning by selecting exercises,within
the scope of the preselected areas of mathematics, requiring the usage of vari-
ous proof techniques,

– teaching a selected mathematical theory presented during the lecture,
– teaching students how to justify their intuitive mathematical solutions in the

formal way.

What kind of mathematical domains to choose? The theory chosen for
the course should be rich enough to enable presenting all proof techniques and
solving a considerable number of tasks within one field of mathematics. Following
the experience of past years and having in mind the university curriculum two
theories - set theory and the theory of binary relations - have been found as
suitable for our aims.
2 The courses were reported at the TYPES workshops in Nijmegen (2004) and Cham-

bery (2005).
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How to use MML? There is no doubt that from the educational point of view
the Mizar repository is a large source of mathematical knowledge. MML provides
us with new didactic possibilities but the main question is how students should
work with it. There are three different ways of the work:

– students can work on the whole MML repository,
– they can work only on its parts,
– they can work on specially dedicated Mizar environments based on selected

parts of MML.

It all depends on a given level of students’ mathematical knowledge and their
understanding of Mizar. Following our previous experience it seems that for
beginner students the third approach is the most proper and it was chosen to
conduct the course described here. Consequently, an environment consisting of
three parts built successively on top of previous ones was created: ENUMSET
(for set theory), RELATION and RELAT AB (for the theory of binary rela-
tions). The notions and definitions included in the environment are presented
below.

Table 1. Environment

ENUMSET

{} (empty set), {x} (singleton), {x,y} (unordered pair)
functors \/ (union of two sets), /\ (intersection of two sets)

\ (difference of sets), \+\ (symmetric difference of sets)
union, meet

attributes empty (set)
predicates c= (inclusion of sets), = (equality of sets), <> (inequality of sets)

misses, meets (as antonym for misses)

RELATION

modes Relation

{} (empty relation), ~ (converse of relation)
\/ (union of relations), /\ (intersection of relations)

functors \ (difference of relations), \+\ (symmetric difference of relations)
* (composition of relations)

attributes symmetric, transitive, asymmetric, antisymmetric, irreflexive
predicates c= (inclusion of relations), = (equality of relations), <> (inequality of relations)

RELAT AB

modes Relation of A,B (relation on two sets)

dom (domain of relation), rng (co–domain of relation)
functors .: (image of relation), " (inverse image of relation)

id (identity of relation), [: , :] (Cartesian product)
attributes reflexive, weakly-connected, connected
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Let us give some explanations of predicates and functors occurring in the
ENUMSET part of environment.

1. The misses predicate is defined as follows:

A misses B means A ∩B = ∅.

2. The union functor is union of arbitrary collection of sets and

x ∈ union A iff ∃B (x ∈ B ∧ B ∈ A) .

3. The meaning of the meet functor (intersection of arbitrary collection of sets)
[3] is following:

if A = ∅ then x ∈ meet A iff ∀B (B ∈ A → x ∈ B),
otherwise (A = ∅) meet A = ∅.

What kind of software to choose for students? As far as software for
students is concerned it is the same as in previous academic years. We would
like only to recall here that:

– GNU Emacs was chosen as the best editor to write students’ answers with
(J. Urban’s MizarMode for Emacs [10], with a web–accessible manual, offers
the students a complete user–friendly interface to the Mizar system),

– the version 7.8.01 of the Mizar system was chosen to verify students results,
(because of the steady development of the system this version was frozen for
the course time),

– the software prepared by A. Naumowicz specially for Mizar courses was used
(it allows students to download new part of the environment for subsequent
classes and store the results of their work after each class to individual ac-
counts on a server).

2.2 Students Work and Examples of Their Tasks

During the course students work proceeds within 15 computer sessions (2 hours
per session): the first one is the introductory one, eleven of them are simply lab-
oratory classes conducted by teachers and three of them are scored achievement
tests (2 in-term exams and a final one).

The introductory session
The session is devoted to instruct students how to use the software prepared for
them, i.e. the text editor Emacs, the Mizar system and Naumowicz’s special
Internet application. The session can proceed as follows:

1. after short exercises within Emacs students try to check two very simple
Mizar articles (for example, one of them can be the empty Mizar article only
with two reserved words: environ and begin) in order to know how to use
MizarMode for Emacs and how the Mizar system reports errors,
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2. next, students connect with the course’s website (see Fig. 1) and sign-up for
their individual web-accounts,

3. after downloading a trial part of the environment (PROPOSIT) they install
it on their laboratory computers (the installation for ENUMSET, RELA-
TION and RELAT AB will be proceeded later in the same way; after the
installation four folders are created: abstr, dict, prel and text; two of
them: the first and the last one are important from the students’ point of
view; in the first one, except PROPOSIT, there are necessary files including
the notions and definitions of a given part of the environment; in the last
one there is the file test.miz including the first part of the Mizar article
suitable for a given part of the environment),

4. next, students open in Emacs the file test.miz and try to write and check
their first simple Mizar formulas of propositional calculus,

5. after finishing the work, each student sends test.miz (the file with the
results) to his (her) individual web–account.

Below, the course’s website is presented. There are two panels: the left one
with our parts of the environment for downloading (the first four ”download”)
and the right one with the Mizar system and GNU Emacs (both for Windows)
for downloading as well as some instructions how to install them.

Fig. 1. The course’s website: http://alioth.uwb.edu.pl
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Laboratory classes
Laboratory classes can be divided into three parts. Each of them is composed of
3–4 computer sessions and is connected essentially with a given part of the envi-
ronment. The students’ task is to prove 5 theorems (as a rule) during each class
(depending on the level of complexity of these theorems and students’ activity
from 3 to 5 tasks were usually solved). Each session lasts 90 minutes. Taking
into consideration the amount of students participating in the session, the teacher
leading the class can devote about 9 minutes per student for consultations.

Part I
During the first part of laboratory classes the ENUMSET part of the environ-
ment is used. Referring to students’ knowledge of simple boolean properties of
sets (learning at the secondary school) we concentrate on teaching them how to
prove theorems in the formal way. By selecting exercises, within the scope of set
theory, students learn various proof techniques e.g.

– proofs by definitional expansion,
– conditional proofs,
– proofs by “reductio ad absurdum”,
– proofs “per cases”.

It seems that set theory is simple enough in order to teach students the above–
mentioned proof techniques and to introduce them the Mizar language and the
most important Mizar constructions that will be used later for justifying their
mathematical hypotheses. Let us have a look at the first, rather easy, students’
tasks.

The first session can be devoted to boolean properties of sets. Such tasks as
presented below

A \/ (B /\ C) c= (A \/ B) /\ (A \/ C);
(A \/ B) \ C = (A \ C) \/ (B \ C);
A c= B implies A c= A /\ B;
A \ B = {} iff A c= B;

give students the knowledge of how to prove by definitional expansion and how to
construct proofs of arbitrary conditional theorem. If we assume that the inclusion
of sets can be proved by definitional expansions and in the next proof steps the
definitions of sets operations will be used then the proof below presents the
solution of the first task.

A \/ (B /\ C) c= (A \/ B) /\ (A \/ C)
proof let x;
assume x in A \/ (B /\ C);
then x in A or x in B /\ C by ENUMSET:def 6;
then x in A or x in B & x in C by ENUMSET:def 7;
then x in A \/ B & x in A \/ C by ENUMSET:def 6;

hence x in (A \/ B) /\ (A \/ C) by ENUMSET:def 7;
end;

Now, knowing how to prove the inclusion of sets, it is easy to prove their equality.
In the ENUMSET part of the environment equality of two sets X and Y is simply
defined as conjunction of two inclusions: X c= Y and Y c= X.
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The conditional proof construction is used to prove the third task. Its solution
can be as follows:

A c= B implies A c= A /\ B
proof
assume E1: A c= B;
thus A c= A /\ B
proof let x;
assume x in A;
then x in A & x in B by E1, ENUMSET:def 10;

hence x in A /\ B by ENUMSET:def 7;
end;

end;

In the above example the word assume indicates that the following sentence
is an assumption of the proof. To justify its current thesis i.e. A c= A /\ B
the technique of nested proofs has been applied. This technique is also used
to proving equivalence of two sentences. Since each equivalence of two sen-
tences is identified with conjunction of two implications, for the proof of the
last task it suffices to prove the implications: A \ B = {} implies A c= B and
A c= B implies A \ B = {}.

The next proof techniques (”per cases” and ”reductio ad absurdum”) and
the Mizar construction consider can be introduced in solutions of the following
tasks:

A\/B c= union {A,B};
A c= B implies union A c= union B;
A misses {};
A c=B & A misses C implies A c= B \ C;
A meets B or A meets C implies A meets B \/ C;
meet {A} c= union {A};
A <> {} & A c= B implies meet B c= meet A;

Of course, the first one can be solved in the other way, but we present below its
”per cases” proof (for details of this proof technique see http://markun.cs.sh
inshu-u.ac.jp/kiso/projects/proofchecker/mizar/skeletons/toc.html).

A\/B c= union {A,B}
proof
let x;
assume x in A\/B;
then E: x in A or x in B by ENUMSET:def 6;
per cases by E;
suppose x in A;
then x in A & A in {A,B} by ENUMSET:def 4;
hence x in union {A,B} by ENUMSET:def 13;

end;
suppose x in B;
then x in B & B in {A,B} by ENUMSET:def 4;
hence x in union {A,B} by ENUMSET:def 13;

end;
end;

The best proof technique for solving the third task is the proof by ”reductio
ad absurdum”. It is a special kind of conditional proofs because of a certain
internal representation of the formula α in Mizar

3. The representation is given
below:
3 The notion ”internal representation” is connected with the notion of ”semantical

correlates” (for details see [7]).
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not α implies contradiction.

So instead of proving that A misses {} we assume the opposite, namely that
A meets {}. To end the proof it is enough to deduce contradiction.

A misses {}
proof
assume A meets {};
then A /\ {} <> {} by ENUMSET:def 12;
then consider x such that E: x in A /\ {} by ENUMSET:def 1;
x in A & x in {} by E,ENUMSET:def 7;
hence contradiction by ENUMSET:def 1;

end;

Let us observe that in the above proof the Mizar construction consider, called
the choice construction, have been applied. In general, it allows to introduce a
new constant (in our case it is x) satisfying certain conditions (in our case it is
x in A /\ {}). What is important here (for students), it is necessary to justify
the conditions.

The remaining tasks allow students to train their deduction skills using the
Mizar constructions learned up till now.

Part II
It seems that most tasks of Part I can be recognized as some kind of exercises on
the level of symbol transformations: student starting from their assumptions try
to manipulate symbols in a certain way in order to obtain their conclusions. But
the next laboratory classes give them the possibility, during the solving of a given
task, to pass from ”the context of discovery” to ”the context of justification” [4].

The laboratory classes of Part II and Part III introduce students the theory
of binary relations. It is a rich enough theory in order to develop students’
deduction skills. From the didactic point of view one of its key features is very
important, namely it allows to visualize the students’ ”context of discovery” by
graphs that represent their reasonings. The Mizar proofs are simply the formal
justifications of students’ intuitive solutions.

The computer sessions of Part II are connected essentially with the RELA-
TION part of the environment. Solving, for example, the following tasks

R*(S*T)=(R*S)*T;
R*(S /\ T) c= (R*S) /\ (R*T);
ex R,S st R*(S /\ T) <> (R*S) /\ (R*T);
ex R,S st R c= S & S is symmetric & not R is symmetric;
R is transitive & S is transitive & R*S=S*R implies R*S is transitive;
R is asymmetric iff R = R \ R~;

students learn basic notions and definitions connected with the theory of rela-
tions and practice several relation properties (e.g. symmetry, asymmetry, tran-
sitivity, etc.). Let us have a look at more complicated students’ tasks.

The most creative tasks are those which require students to discover an exam-
ple which is used to prove that a given theorem is false. We call them ”tasks on
counterexamples”. Usually counterexamples are not that easy to come up with.
We propose the below method of introducing such proofs:
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– first students are asked to prove, for example, the following theorem

R*(S /\ T) c= (R*S) /\ (R*T);

– next they are asked to search for a proof of the inverse inclusion

(R*S) /\ (R*T) c= R*(S /\ T);

The beginning of their proof in Mizar is presented below

let x,y;
assume [x,y] in (R*S) /\ (R*T);
then E1: [x,y] in (R*S) & [x,y] in (R*T) by RELATION:def 5;
then consider a such that E2: [x,a] in R & [a,y] in S by RELATION:def 7;
consider b such that E3: [x,b] in R & [b,y] in T by E1, RELATION:def 7;

Now this is the place in the proof when students realize that: a and b are
not the same and it is impossible to conclude that some ordered pair with x
as its first element can belongs to R. It is some weakness in their proof.

– then students are asked to use this weakness in their proof strategy to search
for counterexamples visualizing this by a graph such as, for example, the
following one:

– finally students justify their reasoning in a formal way by the Mizar proof
as presented below:

ex R, S, T st not (R*S)/\(R*T) c= R*(S/\T)
proof
reconsider R={[0,1], [0,2]} as Relation by RELATION:9;
reconsider S={[1,3]} as Relation by RELATION:8;
reconsider T={[2,3]} as Relation by RELATION:8;
take R,S,T;
assume z1: (R*S)/\(R*T) c= R*(S/\T);
[0,1] in R & [1,3] in S & [0,2] in R & [2,3] in T by ENUMSET:def 3,def 4;
then [0,3] in R*S & [0,3] in R*T by RELATION:def 7;
then z2: [0,3] in (R*S)/\(R*T) by RELATION:def 5;
not [0,3] in R*(S/\T)

proof
assume [0,3] in R*(S/\T);
then consider x such that z3: [0,x] in R & [x,3] in S/\T by RELATION:def 7;
[x,3] in S & [x,3] in T by z3,RELATION:def 5;
then [x,3] = [1,3] & [x,3] = [2,3] by ENUMSET:def 3;
then x=1 & x=2 by ENUMSET:2;

hence contradiction;
end;
hence contradiction by z1,z2,RELATION:def 9;

end;

The next theorem to prove
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R is transitive & S is transitive & R*S=S*R implies R*S is transitive;

is also interesting from the didactic point of view. Students, after the assumption
that the relations R and S are both transitive and that their composition is
associative, start to represent their reasoning on a graph. First, they draw two
arrows (as successive assumption): one arrow from x to y and the other one –
from y to z (see the graph below). The arrows above them represent their middle
steps of reasoning that in the end should lead to draw the last arrow from x to
z (the arrow number 8).

Now, students may formalize their reasoning in Mizar. Below we give this formal
proof with all marked steps.

R is transitive & S is transitive & R*S=S*R implies R*S is transitive
proof
assume E1: R is transitive & S is transitive & R*S=S*R;
thus R*S is transitive
proof
let x,y,z;
assume E2: [x,y] in R*S & [y,z] in R*S; ::1
then consider u such that E3: [x,u] in R & [u,y] in S by RELATION:def 7; ::2
consider v such that E4: [y,v] in R & [v,z] in S by E2,RELATION:def 7; ::3
[u,v] in S*R by E3,E4,RELATION:def 7; ::4
then [u,v] in R*S by E1; ::4
then consider w such that E5: [u,w] in R & [w,v] in S by RELATION:def 7; ::5
E6: [x,w] in R by E1,E3,E5,RELATION:def 12; ::6
[w,z] in S by E4,E5,E1,RELATION:def 12; ::7

hence[x,z] in R*S by E6,RELATION:def 7; ::8
end;

end;

Part III
During the third part of laboratory classes students work on the RELAT AB
part of the environment connected (like the RELATION part of the environment)
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with relations. But in fact students must still use notation, definitions and theo-
rems from all previous parts of the environment. Therefore students prove prop-
erties of sets as well as properties of relations. Solving following tasks (for ex-
ample)

rng (P*R) c= rng R;
ex P,R st dom(P \ R) <> dom P \ dom R;
(dom R) /\ X c= (R~).:(R.:X);
(P*R)"X = P"(R"X);
ex A be set, Q be Relation of A,A st Q <> {} & Q is connected;
ex A,B be set, R be Relation of A,A, S be Relation of B,B

st A c=B & S is reflexive & not R is reflexive;

students perfect their deduction skills and formalization in the Mizar style. Some
tasks are more complicated though essentially they do not step over knowledge
learned up till now. One of that kind of tasks is

∃A−set,Q−Relation of A,A (Q = ∅ ∧ Q is connected)

and its Mizar proof is presented below.

ex A be set,Q be Relation of A,A st Q <> {} & Q is connected
proof
set A = {1};
reconsider Q’={[1,1]} as Relation by RELATION:8;
a: dom Q’ c= A
proof
let x; assume x in dom Q’;
then consider y such that z: [x,y] in Q’ by RELAT_AB:def 1;
[x,y] = [1,1] by z,ENUMSET:def 3;

then x=1 by ENUMSET:2;
hence thesis by ENUMSET:def 3;

end;
rng Q’ c= A
proof
let x; assume x in rng Q’;
then consider y such that z: [y,x] in Q’ by RELAT_AB:def 2;
[y,x] = [1,1] by z,ENUMSET:def 3;

then x=1 by ENUMSET:2;
hence thesis by ENUMSET:def 3;

end;
then reconsider Q=Q’ as Relation of A,A by a,RELAT_AB:def 5;
take A,Q;
[1,1] in Q by ENUMSET:def 3;
hence Q <> {} by RELATION:def 2;
thus Q is connected
proof
let x,y; assume x in A & y in A;
then x=1 & y=1 by ENUMSET:def 3;
then [x,y] in Q by ENUMSET:def 3;

hence [x,y] in Q or [y,x] in Q;
end;

end;

The material chosen for the exercises is not restricted and gives each student
the possibility to construct his own examples of the objects (sets or relations)
with given properties.
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Tests
During the course, three tests were conducted. At the beginning of each test,
students logged into their accounts on the server and downloaded the individual
(generated by a special program) set of 5 tasks to solve (see Table 2). After
downloading the test set, students solved tasks themselves with their computers.
Results of finished work they sent back as usual by Internet onto the server.

Table 2. Examples of test tasks

Test 1

reserve X,Y,a,b,c,d,e for set, P,R,Q for Relation;

P is transitive & R is transitive implies P/\R is transitive;
dom (P\/R) = dom P \/ dom R;
{} is asymmetric;
(P \/ R)~ = P~ \/ R~;
R c= R~ iff R is symmetric;

Test 2

reserve X,Y,a,b,c,d,e for set, P,R,Q for Relation;

{} = {}.:X;
R"X c= dom R;
R.:(X/\Y) c= (R.:X) /\ (R.:Y);
ex P,R st P is symmetric & R is symmetric & not P*R is symmetric;
ex P,R st rng(P\R) <> rng P \ rng R;

Test 3

reserve X,Y,a,b,c,d,e for set, P,R,Q for Relation;

ex P,R st P is transitive & R is transitive & not P*R is transitive;
R.:X c= R.:dom R;
P c= R & R is irreflexive implies P is irreflexive;
rng (P\/R) = rng P \/ rng R;
(P /\ R)~ = P~ /\ R~;

All students’ submissions were later checked by the teacher using the Mizar

system. A task was admitted as solved correctly when the Mizar verifier reported
no errors. The following scoring scheme was used in the first and the second test:
0 points – any error appeared, 3 points – no errors, and in the third test: 0 points
– any error appeared, 4 points – no errors.

The scores contributed to each student’s final grade as 30 – 30 – 40 per cent.
Our proposition of the scale of marks is given below in Table 3.

3 Conclusions and Remarks

Discussed here course has been conducted since the 2003–2004 academic year, in
autumn semester each year. Mizar as a tool for writing formal proofs was intro-
duced gradually. At the beginning, it were only classes organized in traditional
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Table 3. Statistics of marks

Points Marks ECTS Number of students
50 - 44 5 A 6
43 - 35 4.5 B 9
34 - 27 4 C 14
26 - 20 3.5 D 8
19 - 14 3 E 9
0 - 13 2 F 10

way (30 hours). Next, in the 2003–2004 academic year the course consisted of
15 hours of common classes and 15 hours of laboratory classes (half to half)
and for three years now – only 30 hours of laboratory classes. The university
curriculum planned for the next year contains computer–aided subjects based
on Mizar as obligatory for all–year computer science students in our Institute.
So, we treat this course as some kind of the long–term ”students’ investment in
Mizar knowledge”.

Students must devote some time for mastering all Mizar constructions needed
for writing formal proofs in Mizar language. That is why we encourage them
to solve some tasks at home. We noticed that students who worked at home
reached much better results in tests than students who solved tasks only during
the laboratory classes. For the very beginning of this course students were being
pressed for:

– installing the text editor Emacs and the Mizar system on their own com-
puters at home,

– mastering Emacs (which far speeds–up writing proofs and checking their
correctness),

– doing at home at least these task that were given to solve during the labo-
ratory sessions,

– asking teacher for help in solving their problems.

We learned that the difference between good students and poorer ones is
more apparent than usually. Weaker students need much more time to solve
their tasks. The most problems of weaker students’ work were caused by the
following factors:

– they did not pay enough attention to the comments flagged by the system;
some of students did not understand them at all or misinterpreted them
(moreover, they did not report these problems to the teacher which slowed
down teaching process in classes),

– they had problems with constructing the formal proofs as they did not have
deduction skills developed enough; they lacked knowledge of what proof
strategy can be used in a given context, what is the premiss, and what
is the current thesis,
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– they tried to solve their tasks only on the level of symbol transformations;
starting from premiss(es) they try to manipulate symbols in such a way that
Mizar reports no errors – without understanding the proof,

– they did not try to solve tasks themselves at home,
– they manifest small activity during the classes.

In spite of some troubles, the didactic result of this course was positive. The
average grade was 3,5 (3,5625 – on the 2 – 5 scale). This effect was caused by
the following factors:

– individual students’ work under control of the teacher,
– the ability of individual work at home (controlled by the Mizar system)

enabling more intensive training in the art of proving,
– the activity of good students mobilizes others to work more intensively (if

at least one student solves a given task, then the others realize that the task
is not so difficult after all and they start working more intensively in order
to prove it themselves).
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Abstract. Formal concept analysis (FCA) comprises a set of powerful
algorithms which can be used for data analysis and manipulation, and
a set of visualisation tools which enable the discovery of meaningful re-
lationships between attributes of the data. We explore the potential of
combining FCA and mathematical discovery tools in order to better fa-
cilitate discovery tasks. In particular, we propose a novel lookup method
for the Encyclopedia of Integer Sequences, and we show how conjectures
from the Graffiti discovery program can be better understood using FCA
visualisation tools. We argue that, not only can FCA tools greatly en-
hance the management and visualisation of mathematical knowledge, but
they can also be used to drive exploratory processes.

1 Introduction

Formal Concept Analysis (FCA) consists of a set of well established techniques
for the analysis and manipulation of data. FCA has a strong theoretical un-
derpinning, efficient implementations of fast algorithms, and useful visualisation
tools. There are strong links between FCA and machine learning, and the con-
nection of both fields is an active area of research [8,12,13]. We concentrate here
on the combination of FCA tools with systems developed to aid mathematical
discovery. In particular, we are interested in addressing (i) whether FCA al-
gorithms can be used to enhance the discovery process and (ii) whether FCA
visualisation tools can enable better understanding of the discoveries made.

To facilitate this study, we have implemented ways to integrate two FCA
tools with (a) a system that uses HR [4] and Maple [18] to discover graph theory
conjectures in a manner similar to the Graffiti program [5], and (b) the On-
line Encyclopedia of Integer Sequences, which is a very important mathematical
database. In the first case, we show that the large number of conjectures which
are produced can be efficiently organised and better visualised using a lattice
structure afforded by representing the conjectures as a formal context. In the
second case, we show that the data manipulation aspects of FCA enable a new
way to mine information from the Encyclopedia. In particular, we describe a sys-
tem we have implemented which can return sensible matches to query sequences
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that neither the Online Encyclopedia nor its more powerful sister program – the
superseeker server – can explain.

This paper is organised as follows. In the next section, we briefly describe
the theory, applications and implementations of Formal Concept Analysis. In
section 3, we describe the Graffiti program, our HR/Maple simulation of it and
the Encyclopedia of Integer Sequences. In section 4, we describe the methods
we have developed in order to use FCA tools in conjunction with the HR/Maple
simulation and the Encyclopedia. Following this, in section 5 we describe some
experiments with both the HR/Maple/FCA combination and the Encyclope-
dia/FCA combination. In particular, we look at the sensitivity and selectivity
of the lookup method afforded by the Encyclopedia/FCA combination, and we
give some examples of it in use. We also provide an illustrative example of using
FCA visualisation tools to better understand a set of graph theory conjectures
produced by the HR/Maple system. We conclude in section 6 by suggesting that
FCA visualisation and data analysis tools could be used not only to enhance
mathematical discovery, but also to drive the discovery process.

2 Formal Concept Analysis

Formal concept analysis is a mathematical theory of conceptual hierarchies. A
formal context is defined as a set of formal objects O, a set of formal attributes
A and a relation I on O×A. The relation oIa for o ∈ O and a ∈ A can be read
as “object o has attribute a” or “attribute a is true for object o”. Such a binary
context can be represented as a “cross table” (cf. Fig. 1). The set of common
attributes of a set of objects O ∈ O is defined as O′ = {a ∈ A: oIa ∀o ∈ O}.
Analogously, the set of common objects of a set of attributes A ∈ A is defined
as A′ = {o ∈ O: oIa ∀a ∈ A}. A formal concept is a pair of sets (O, A) where
O′ = A and A′ = O. The set O is called the extent and A the intent of the formal
concept C = (O, A). Formal concepts correspond to maximally filled rectangles
in the cross table. Together with the subconcept relation, which is the sub-set
(resp. super-set) relation on intents (resp. extents), a formal context forms a
complete lattice. For more details on the mathematical theory of FCA, see [10].
For details of how FCA has been formalised in PVS and Mizar, see [11] and [16].

FCA has been successfully applied in various domains [9], and FCA theory is a
good foundation for efficient algorithms as well as for human understandable rea-
soning. Visualisation of the concept lattice in what are known as Hasse diagrams
is a particularly useful tool in human centred knowledge discovery. If the context
is too large, its visualisation may become confusingly complex, but there are var-
ious methods in FCA to handle this complexity, e.g., conceptual scaling, nested
line diagrams, product of sublattices [7,10,15]. To further clarify the diagrams,
a reduced labeling is often used in FCA. Reduced labelings can be summarised
as follows: (i) each node represents a formal concept (ii) objects are annotated
below the most specific concept which contains them in its extent (iii) analo-
gous attributes are annotated above the most general concept which contains
the attributes in its extent (iv) to retrieve the complete extent (resp. intent)
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of a concept, one simply collects all objects (resp. attributes) which can be
reached from the concept through a path downwards (resp. upwards) in the lat-
tice (v) the top concept contains all objects but often no other attribute besides
“being an object of the domain”, whereas the bottom node contains all attributes
and often no object (vi) implications between intents can be read from the lat-
tice by following the arcs upwards. See Fig. 1 for a simple example of a Hasse
diagram with reduced labeling.

prime odd even 2n

1 × ×
2 × × ×
3 × ×
4 × ×
5 × ×
6 ×

Fig. 1. A cross table and corresponding Hasse diagram produced by ConExp

There are several software tools available which implement FCA techniques.
One of the first implementations of FCA algorithms was Peter Burmeister’s
ConImp1. More recent tools include ToscanaJ2 and QuDA3. For the experiments
described here, we have used the Galicia4 and ConExp5 [19] systems which are
written in Java. Galicia can be used as a command line tool, e.g., within shell
scripts, as a library, or as a stand-alone tool with a graphical user interface.
ConExp offers a convenient user interface and implementations of most of the
most powerful current algorithms, e.g., for the calculation of implication bases
and for concept exploration.

3 Mathematical Discovery Systems

3.1 The Graffiti Program simulated by HR and Maple

The Graffiti program [5] by Siemion Fajtlowicz makes conjectures of a numerical
nature in graph theory. Given a set of well known, interesting graph theory
invariants, such as the diameter, independence number, rank, and chromatic
number, Graffiti uses a database of graphs to empirically check whether one
1 http://www.mathematik.tu-darmstadt.de/∼burmeister/
2 http://toscanaj.sourceforge.net/
3 http://kirk.intellektik.informatik.tu-darmstadt.de/∼quda/
4 http://www.iro.umontreal.ca/∼galicia/
5 http://conexp.sourceforge.net/

http://www.mathematik.tu-darmstadt.de/~burmeister/
http://toscanaj.sourceforge.net/
http://kirk.intellektik.informatik.tu-darmstadt.de/~quda/
http://www.iro.umontreal.ca/~galicia/
http://conexp.sourceforge.net/
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sum of invariants is less than another sum of invariants. The empirical check
is time consuming, so Graffiti employs two techniques, called the beagle and
dalmation heuristics, to discard certain trivial or weak conjectures before the
empirical test. If a conjecture passes the empirical test and Fajtlowicz cannot
prove it easily, it is recorded in [6] and forwarded to interested graph theorists.

As an example, conjecture 18 in [6] states that, for any graph G:

cn(G) + r(G) ≤ md(G) + fmd(G),

where cn(G) is the chromatic number of G, r(G) is the radius of G, md(G) is
the maximum degree of G and fmd(G) is the frequency of the maximum degree
of G. This conjecture was passed to some graph theorists, one of whom found
a counterexample. The conjectures are useful because calculating invariants is
often computationally expensive and bounds on invariants may bring computa-
tion time down. Moreover, these types of conjecture are of substantial interest to
graph theorists, because they are simply stated, yet often provide a significant
challenge to resolve – the mark of an important theorem such as Fermat’s Last.
In terms of adding to mathematics, Graffiti has been extremely successful. The
conjectures it has produced have attracted the attention of scores of mathemati-
cians, including many luminaries from the world of graph theory. There are over
60 graph theory papers published which investigate Graffiti’s conjectures.

Unfortunately, Graffiti is not available for experimentation. However, in [14],
we used a combination of the Maple computer algebra system and the HR au-
tomated theory formation system [4] to simulate Graffiti, and we produced very
similar results. The way in which HR operates and the tools it has available for
management of the mathematical information it produces have been described in
[3]. A detailed description of how we used HR and Maple in graph theory is be-
yond the scope of this paper. However, we note that in order to further describe
the conjectures produced, we calculated (i) a tightness measure which determined
how close the inequality was to being equality (which is useful when using one
summation of invariants to bound the calculation of another), and (ii) a slack
constant for each conjecture which is the largest real number which can be added
to the left hand side of the inequality without breaking it. For instance, the con-
jecture that for all graphs, G, rank(G) ≤ connectivity(G)+num vertices(G) has
slack value 1, which means we can strengthen the conjecture to: rank(G) + 1 ≤
connectivity(G) + num vertices(G).

3.2 The Online Encyclopedia of Integer Sequences

The Online Encyclopedia of Integer Sequences,6 contains more than 127,000
integer sequences, such as prime numbers, square numbers, the Fibonacci series,
etc. They have been collected over 40 years by Neil Sloane, with contributions
from hundreds (possibly thousands) of mathematicians. The Encyclopedia is
very popular, receiving tens of thousands of queries every day. The first terms

6 http://www.research.att.com/~njas/sequences
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of each sequence are stored, and the user queries the database by providing
the first terms of a sequence they wish to find a hit for. Sloane has recorded
many times when using the Encyclopedia has led to a conjecture being made.
For instance, in [17], he describes how a sequence that arose in connection with
a quantization problem was linked via the Encyclopedia with a sequence that
arose in the study of three-dimensional quasicrystals. Enabling such discoveries
is one of the main purposes of the Online Encyclopedia. In addition to this
web-service, there is also an email-service called the superseeker, which, as well
as searching the Encyclopedia, performs extensive transformations on a given
query sequence and on the Encyclopedia entries in order to find a match which
explains the query.

4 Combining Mathematical Discovery Software and FCA

In the following sub-sections, we describe two applications where we have used
FCA to (i) help visualise the results of a mathematical discovery system, and
(ii) enhance the abilities of a mathematical discovery system.

4.1 Visualising Inequality Conjectures

A difficulty we had with the simulation of the Graffiti program described above
was the sheer volume of the conjectures it produced. We ordered these in terms
of the inequality tightness, but it was still difficult to pick out conjectures for
certain graph invariants. Moreover, it was difficult to keep track of the chains of
inequalities. For instance, it might look promising to investigate the conjecture
that I1 ≤ I2 + I3, but this was made irrelevant by finding elsewhere in the list
the stronger conjectures that, say, I1 ≤ I17 and I17 ≤ I2.

In order to better manage and visualise the inequality conjectures produced,
we used the ConExp FCA system. To do so, after a session with HR/Maple
simulating Graffiti, we extracted the set of summations, S, of invariants in the
theory, and formed a binary context with them (note that S also contained
the initial set of invariants). We used S both as the set of formal objects and
the set of formal attributes in the binary context. Then, we extracted the set of
inequalities produced and used the binary relation that an object so (summation
of invariants) has attribute sa (also a summation of invariants) if the conjecture
xo ≤ sa has been made. Deriving the formal context in this way enables us to
read off inequality conjectures from the Hasse diagram: each node represents a
summation of invariants or a set of summations, and if one node n1 is joined
to another node, n2, which is higher in the lattice, then the set of summations
represented by n1 is conjectured to be less than or equal to the set of summations
represented by n2. We present a lattice for the first 120 conjectures produced
by HR/Maple and we describe how the lattice size grows as the number of
conjectures grows in section 5.1.
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4.2 Integer Sequence Lookup

As discussed above, the Online Encyclopedia of Integer Sequences is an extremely
powerful and popular mathematics tool. However, there is some room for im-
provement in the way it searches for conjunctions of sequences. For instance,
searching for this query sequence: 1, 9, 36, 225 returns a single hit, namely
sequence A036907, which are square refactorable numbers (see [1]). However,
searching for the sequence 1, 36, 136, 276, which is in fact the first four tri-
angular refactorable numbers returns no results. In the first case, the hit was
successful, because someone had entered the concept of square refactorables into
the Encyclopedia, but as no-one had done likewise for triangular refactorables,
no hit was made in the second case.

We have implemented a routine which is able to efficiently construct such
missing conjunctions of pairs, triples, quadruples, etc., of number types from
the Encyclopedia. We start with the database, D, which was embedded in the
NumbersWithNames program [2]. This is a snapshot of a fragment of the Ency-
clopedia taken in 2001, and contains 990 integer sequences which are of sufficient
importance to have been given names, such as prime numbers, even numbers,
pernicious numbers, etc. D contains only strictly increasing sequences, and rep-
resents roughly one hundredth of the current Encyclopedia entries. Given a query
sequence Q = {q1, . . . , qn}, we first extract the set S = {s ∈ D : ∀ qi ∈ Q, qi ∈ s}.
This is effectively the set of database sequences which are supersequences of the
query. We then set up a binary context with formal objects being the integers 1
to qn, formal attributes being the set S, and the binary relation between objects
and attributes expressed as the relationship of whether an integer (object) is part
of a sequence (attribute). We then form a Hasse diagram with reduced labeling,
and inspect the bottom node of the lattice. The intent of this node will be a con-
junction of sequences in S, and is returned as the definition of a sequence which
covers the query sequence. Note that the intent may include fewer terms than
the set of supersequences of the query, due to the reduced labeling performed by
FCA, yet the extent may contain more terms than the query sequence, as the
intent may describe more than just the query terms.

As an illustrative example, take the sequence 88, 124, 216, 246. Note that
this returns no hit from the Online Encyclopedia, and even superseeker fails to
find a way of explaining this sequence. Our system returns three hits from the
NumbersWithNames database, and constructing the binary context as described
above produces the lattice presented in Fig. 2. We see that, in this case, the
intent covers perfectly the query sequence in its extent, i.e., our system has
discovered that the query sequence can be described as the set of untouchable
Erdos-Woods numbers which are palindromic when written in base 5. While this
is certainly not a simple definition, it is considerably easier to understand than
many returned from the superseeker server. As another example, if we start with
the query sequence 12, 30, 42, 56, our system informs us that the sequence of
heteromecic, semi-perfect, balanced numbers has this sequence: 6, 12, 30, 42,
56, which is a super-sequence of our query sequence.
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Fig. 2. Hasse diagram for sequence lookup (produced by Galicia)

Successful database lookup methods have to find a balance between sensitivity
and selectivity. Sensitivity is the ability of the method to find genuine hits for
a high proportion of queries it receives. Selectivity, on the other hand, is the
ability of the method to avoid false positives, i.e., answers to queries which
are not genuine hits. We have found that selectivity can be a problem for our
method. For instance, if we start with the sequence 2, 18, 68, 102, 116, then
there are only two sequences from the database which contain all the query
terms, namely A005843 (even numbers) and A045954 (even lucky numbers). In
this case, therefore, our method will return the concept of integers which are
both even and even lucky numbers as the hit for this sequence. The extent of
this concept is, of course, the sequence of even lucky numbers: 2, 4, 6, 10, 12, 18,
20, 22, 26, 34, 36, 42, 44, 50, 52, 54, 58, 68, 70,. . . Clearly this is too general,
and hence not a genuine answer to the query. Hence, to keep the selectivity high,
such answers should not be output by our method.

Another way in which an answer might be perceived as being not genuine is if
it is too specialised. For instance, given the sequence 5, 20, 23, 29, left unchecked,
our method returns the answer that these integers are congruent, undulating,
fibonacci-lucky, evil, cube-free, babylonian, noncube, nonsquare, unlucky, arc-
cotangent irreducible/stormer, biquadratefree and weak numbers. This conjunc-
tion of 13 sequence definitions covers perfectly the integers 5, 20, 23, and 29,
and no others between 1 and 29. However, the answer is hardly satisfying. We
therefore need a way in which to constrain our method to output concepts which
are not too specific in their intent, yet not too general in their extent.
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Table 1. HR/Maple’s tightest inequalities (from 120 conjectures in graph theory)

Tightness Slack Conjecture
0.998 0 connectivity(G) ≤ mindegree(G)
0.918 0 rank(G) ≤ num vertices(G)
0.842 0 connectivity(G) + diameter(G) ≤ num vertices(G)
0.823 0 av degree(G) ≤ max degree(G)
0.803 1 max degree(G) ≤ num vertices(G)
0.799 0 radius(G) ≤ diameter(G)
0.793 1 rank(G) ≤ connectivity(G) + num vertices(G)
0.781 0 chromatic number(G) ≤ rank(G)
0.769 0 min degree(G) ≤ av degree(G)
0.767 0 connectivity(G) ≤ av degree(G)

To improve the selectivity of our approach, we use two constraints to rule out
certain sequences from D from inclusion in the answer. Firstly, sequences must
have a density less than 0.5 over the region of the number line they occupy (a
sequence s1, . . . , sn has density n

sn−s1
). This rules out very general sequences

such as square free integers. As roughly 6 in every 10 integers less than 100
are square-free, this concept is unlikely to form a property of a genuine hit.
Secondly, we maintain a black-list of sequences which are found in answers too
often (and hence are likely to be too general in their extent). We derived this
list experimentally, by randomly generating 10 sequences, using our method to
construct an answer, and then adding any sequence to the black-list if it appeared
in three or more answers. We repeated this a number of times until no sequence
appeared more than three times for a few turns.

The black-list currently contains the following sequences (with an asterix signi-
fying a wild-card): nilpotent, nialpdrome*, smooth*, panconsummate, loeschian,
odd, even, odd square free, even cototient, harshad/niven, equidigital, prime
power, practical*, digitised partition, cyclic, amino acid, contracted, power-sum,
flimsy, higgs’ prime. Note that some black-listed sequences have density greater
than 0.5, and are hence caught by both constraints. We have kept them in the
list for the purpose of experimentation (see section 5.2). These two constraints
very much reduce the set of database sequences which can be conjoined, and so
the intent of an answer rarely contains more than a few sequences. However, we
have a final filter on the output: if the intent contains a conjunction of more
than five sequences, it is not shown to the user. We present some experiments
with this lookup method in section 5.2.

5 Experiments and Results

5.1 Graph Theory Visualisation

For our experiments in graph theory, we used the HR/Maple simulation of
Graffiti as described above to generate conjectures about inequalities of graph
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Fig. 3. Concept lattice for graph invariants, focused on chromatic numbers

invariants. Given the background definitions number of vertices, number of edges,
diameter, connectivity, countcuts, max-degree, min-degree, counttrees, rank, av-
erage degree, average temperature, radius and chromatic number, we ran HR for
10000 steps which produced 66 new summations of the given 13 graph invariants,
and 820 inequality conjectures. Using subsets of these conjectures, we calculated
the formal context with the graph invariants as objects and attributes and the
less than or equal to relation and then used ConExp to generate the Hasse dia-
gram for inspection. For instance, in Fig. 3, we present the lattice derived from
the first 120 conjectures that HR/Maple produced. We have used the ConExp
interaction facilities to highlight the chromatic number node, which enables us
to read off the conjectures involving that invariant. For comparison, in table 1,
we show the kind of output that HR/Maple is able to produce, namely the top 10
conjectures from the 120 conjectures when they are ordered in decreasing tight-
ness of the inequality in the conjecture. Compared to just a list of the inequality
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Fig. 4. Number of inequalities versus number of formal concepts

conjectures, we see that the FCA lattice enables us to much more easily read
chains of inequalities. For instance, we can clearly read the chain of inequalities:
chromatic number ≤ rank ≤ max degree + num vertices.

Given the highlighting abilities that ConExp has, we are able to mine infor-
mation easily from more complex lattices. However, it is informative to look at
how complex the lattices become as the number of conjectures they are used
to represent grows. In Fig. 4, we plot the number of nodes in the lattice versus
the number of inequality conjectures. We see that up to around 400 conjectures,
the lattice contains fewer nodes than conjectures. However, after this point, the
number of nodes rises quite sharply. Indeed, after 600 conjectures, there is no
gain in clarity from using FCA because there are more nodes than conjectures.

5.2 Encyclopedia of Integer Sequences Lookup

Initial experiments with the integer sequence lookup approach described in sec-
tion 4.2 showed much promise. To begin to determine whether the method could
be used in practice (perhaps as part of the superseeker server), we need to test
three aspects: (i) lookup speed (ii) sensitivity (iii) selectivity. The first of these
is easy to deal with - the time taken to generate an answer to a query has been
around 40 milliseconds, which would probably make it fast enough for a server.

Assessing the sensitivity of our method is somewhat problematic, as we need
to assess the probability of a suitable answer being returned for any reasonable
query. Such a measure of sensitivity will become clear as the lookup service is
used for real queries. However, it is clear that, if the user submits a sequence
which is a perfect conjunction of two to five number types in the Numbers-
WithNames database, then the lookup method will return an answer. The only
exceptions to this would be if the number types were too dense on the number
line, or if one of the sequences was black-listed, and both these scenarios are
unlikely for reasonable query sequences. A more tractable question involves the
selectivity of our method – if it consistently returns spurious answers to queries,
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Table 2. Sequence lookup for 1000 randomly generated sequences
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1a 0.5 yes yes 25 129845 4.117 8.157 73 168 2.434 2.323 5 20.665
2a 0.5 yes no 25 131046 4.112 8.147 72 138 2.447 2.368 10 19.491
3a 0.5 no yes 25 9943 4.396 16.161 8 40 2.812 2.707 5 15.656
4a 0.5 no no 25 9048 4.4 15.878 26 53 3.216 3.034 13 14.933
5a 1.0 yes yes 25 2281 5.477 38.186 1 1 4.863 3.477 5 33.973
6a 1.0 yes no 25 1405 5.138 30.318 4 10 6.84 5.283 13 34.594
7a 1.0 no yes 25 2603 5.641 37.519 0 0 4.801 3.46 5 24.949
8a 1.0 no no 25 1341 5.19 27.56 13 29 7.091 5.512 18 32.153
9a 0.5 no no 25 - 4.117 6.946 158 314 6.354 5.679 15 18.602
10a 1.0 yes no 25 - 4.117 5.849 293 360 11.009 8.553 16 42.948
11a 1.0 no no 25 - 4.117 5.285 440 512 15.12 11.512 23 83.639
1b 0.5 yes yes 50 253540 4.09 12.566 25 47 2.274 2.234 5 29.786
9b 0.5 no no 50 - 4.09 10.936 62 112 4.777 4.589 15 33.631
10b 1.0 yes no 50 - 4.09 10.456 88 117 6.123 5.272 15 61.951
11b 1.0 no no 50 - 4.09 9.067 159 213 8.786 7.406 21 50.171
1c 0.5 yes yes 100 829628 4.065 17.851 7 20 2.377 2.368 5 45.432
9c 0.5 no no 100 - 4.065 16.048 24 58 3.956 3.904 14 32.083
10c 1.0 yes no 100 - 4.065 16.944 23 36 3.524 3.298 15 37.392
11c 1.0 no no 100 - 4.065 15.242 58 88 5.182 4.782 21 37.305

then it will be de-valued and not used. To address selectivity, we ran three sets
of 11 experiments, with the results presented in table 2.

In experiment 1a, we used the lookup method with the maximum density,
black-list and maximum definition constraints all imposed. We generated ran-
dom sequences in the following way: we generated a random integer between 1
and 25 as the first entry in the sequence, then added this to another random
integer between 1 and 25 to get the second entry, and continued in this way un-
til our sequence contained between 4 and 7 (inclusive) integers, with the length
also determined randomly. This gives strictly increasing sequences with integers
roughly between 1 and 100 on the number line, which is the kind of query se-
quence we may expect (with perhaps a bias towards smaller numbers than for
usual queries). As the method with all three constraints is particularly selective,
it only returned hits for 1000 out of 129845 randomly generated sequences.

We recorded a number of statistics about these 1000 sequences. Firstly, we
compared the length of the query sequence with the length of the sequence which
was returned (i.e., the extent of the conjunction of sequence definitions). A large
difference in the two lengths means that the sequence returned is unlikely to be a
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genuine hit for the sequence. In experiment 1a, the average sequence length was
4.1, and the average hit length was 8.157, hence we could expect approximately
double the integers in the hit than the query. However, for 73 of the 1000 se-
quences, a perfect hit was returned, i.e., the hit was exactly the query sequence.
Also, 168 of the returned sequences contained the query sequence contiguously,
i.e., the hit was either perfect or had some initial integers which were not part of
the query sequence (our method precludes trailing integers). Note that this kind
of hit is also returned by the Encyclopedia of Integer Sequences, as the initial
terms of a query sequence are often omitted.

In addition to details of the extent of the concept returned, we also recorded
details of the intent returned. In particular, we recorded the average number
of sequence definitions which were conjoined in the definition of the hit. In
experiment 1a, the average was 2.323. Note that the average number of super-
sequences of the query sequence was 2.434. Hence, we see that the FCA technique
of reducing the intent to remove redundant definitions is effective, even when
there are only a few definitions conjoined (this effect becomes greater in later
experiments, e.g., experiment 11a, where the reduction is by between 3 and 4
terms on average). In summary, if our method does return an answer, then there
is a roughly 1 in 10 chance that it will be high quality, i.e., perfect and/or
contiguous. Moreover, the definition of the hit will be fairly understandable – on
average a simple conjunction of either two or three sequence definitions.

It is difficult to know in advance whether this will be selective enough for
users of the lookup method. However, we can show that our method could be
much less selective. In experiments 2a to 8a, we varied the usage of the def-
inition length, density and black-list constraints. As table 2 shows, with the
exception of removing only the definition length constraint, the method is far
less selective when we remove the constraints. For instance, in experiment 8a,
there were no constraints used. The method returned an answer for most of the
query sequences (the exceptions were queries able to be answered with only one
sequence – which were still ruled out). However, the answers returned were very
low quality. On average, the answer to a query contained 22 more terms than the
query – effectively making them useless answers – and the method found only
13 perfect hits. Moreover, the definitions of the answers were more complicated,
being a conjunction of on average 5.5 sequence definitions.

In experiments 9a, 10a and 11a, we tested how the unconstrained methods
perform on the sequences which passed the selectivity test from experiment 1,
i.e., the 1000 sequences which returned a hit from the constrained method. The
results from these tests were very interesting: it appears that if a query sequence
does have some semantic value with respect to the number types in the database
(i.e., should have a description according to the selectivity criteria), then the
unconstrained lookup methods can often synthesise a more complicated but more
accurate answer. Experiment 9a is particularly interesting: here the returned
solutions were on average conjunctions of only 6.354 sequence definitions, but
they included 158 perfect hits, which was more than double than in experiment
1a. In experiment 11a, the accuracy of the hits was striking: in 440 cases, the
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Table 3. Perfect hits from experiment 1a which are missing from the Encyclopedia

Sequence Description
6,30,36,60 eban & evil & pseudo-perfect/semi-perfect & highly abundant
2,11,23,48 semi-fibonnaci & problime(3)

13,31,41,53,71 prime & primitive congruent & regular prime & short-period prime
13,37,41,53 prime & primitive congruent & gaussian prime & short-period prime

4,25,38,58,74 fibonacci-lucky & semi-prime/2-almost prime & twin fibonacci-lucky(1)
1,8,22,34 multiplicatively perfect & polyomino
8,21,32,50 arc-cotangent reducible/non-stormer & duffinian
3,18,20,30 evil & base-4 colombian/self & highly abundant
24,30,43,53 evil & strict egyptian(1)
3,17,21,38 base-4 palindrome & arc-cotangent reducible/non-stormer
6,15,23,30 evil & binary colombian/self & primitive congruent

2,5,25,38,59 fibonacci-lucky & base-4 palindrome & twin fibonacci-lucky(1)
15,23,48,51 rhombic & evil & binary colombian/self
4,6,30,46 eban & 2-knodel & binary colombian/self
6,12,27,36 evil & truncated triangular(1)
6,18,36,54 evil & pseudo-perfect/semi-perfect & base-8 palindrome
15,23,43,48 rhombic & evil & problime(3)
1,4,25,32 fibonacci-lucky & base-7 armstrong(2) & perfect power
7,19,23,32 rhombic & fibonacci-lucky & friendly/happy
2,7,13,37 prime & fibonacci-lucky & exceptional prime &

class-1/pierpoint prime & absolute prime
1,10,20,26 semimorphic & base-3 palindrome & davenport-schinzel(1)

method returned a perfect hit. However, the cost for this was more complicated
definitions of the hits: on average they were conjunctions of 11.512 sequences.
This suggests a two-tier approach for the lookup method: (i) filter the sequence
using the selectivity criteria, and return nothing if it fails the test (ii) for any
sequence which passes the test, return both the answer from the constrained
lookup and from the unconstrained lookup. The former answer will be easier
to understand but perhaps less accurate, while the latter answer will be more
difficult to understand, but is likely to be more accurate.

We repeated the set of 11 experiments twice. In the second set, we used 50
rather than 25 as the interval with which to generate random sequences, and in
the third set we used 100. We report only the results from the first experiment
in the set (with all the constraints imposed), and the final three experiments
(with fewer constraints, applied to the sequences passing the selectivity criteria
of the first experiment). We observe that finding solutions becomes increasingly
difficult as the sequences spread out over the number line, which was a trend we
expected. However, we didn’t expect the trend that the number of definitions in
the unconstrained answers reduces as the sequences spread out. For instance, in
the first set of experiments, the unconstrained method produced around 6 times
more perfect hits than the constrained method, but needed to conjoin around 4
times the number of definitions. In contrast, in the third set of experiments, the
unconstrained lookup method found more than 8 times more perfect hits, but
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used only twice the number of definitions. While this phenomenom is explainable
– as fewer sequences from the Encyclopedia will match sparse sequences – it adds
weight to our proposal of using a two-tiered approach to sequence lookup.

In table 3, we list the 21 sequences for which our fully constrained method
(experiment 1a) returned a perfect hit, whereas the Encyclopedia of Integer
Sequences returned no hits. The average number of conjoined definitions for these
sequences is 2.95, which is higher than the average for experiment 1a, suggesting
that sequences have to be more complex to be missing from the Encyclopedia.

6 Conclusions and Future Work

Formal Concept Analysis is a well developed area with much to offer for data
analysis in various application domains. We have investigated the usage of FCA
for analysis, manipulation and visualisation of mathematical knowledge/data. In
particular, we have addressed the question of whether FCA could be used to en-
hance systems used for automated or semi-automated mathematical discovery. In
the application to database lookup from the Encyclopedia of Integer Sequences,
we have shown that FCA tools are useful for manipulation of mathematical in-
formation, and our system was able to find sensible answers to numerous query
sequences which the Encyclopedia (and in some cases superseeker) couldn’t an-
swer. In the application to visualising the graph theory conjectures produced
by our HR/Maple system, we showed that FCA visualisation tools have much
potential for better management of machine generated mathematics.

In a further set of experiments which there hasn’t been space to describe here,
we have used the implication generation tools within ConExp with the results
from using HR in number theory. In a particular test, we wanted to see whether
using HR followed by FCA concept exploration could help us find a particular
conjecture quicker than using HR alone. Starting with just the ability to multiply
two numbers, HR can discover the conjecture that odd refactorable7 numbers
are squares. With fairly strict restrictions on the search that HR can perform,
it still takes 721 steps to produce 1883 conjectures, the last of which is the one
we wanted. However, if we stop HR after only 64 steps, and then use ConExp to
generate all implication conjectures possible from the 22 concepts that HR has
produced, the conjecture that we want is output. We need to perform further
tests, but it seems likely that a permanent combination of HR with an FCA
system could dramatically reduce the combinatorial burden that HR has when
making conjectures, and FCA could improve HR’s discovery process as a whole.

This not only strengthens our claim that the combination of FCA tools with
discovery systems has much potential to enhance discovery, but it also suggests
a more fine-grained involvement of FCA in discovery tasks. In particular, in
future work, we plan to build a hybrid FCA/machine learning system which
is of benefit to both the machine learning and the FCA communities. Among
other benefits, we intend the system to improve upon (a) FCA systems, by
using concept formation abilities similar to those from machine learning, and
7 Refactorable numbers, n, are such that the number of divisors of n is itself a divisor.
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(b) the visualisation and user-interaction abilities of machine learning systems.
The system will enable FCA tools to drive the exploration process using machine
learning enhancements. We hope to show that the hybrid system enables users
to make more interesting discoveries in mathematical domains than they would
using FCA or machine learning tools alone. We also intend to apply the hybrid
system to discovery tasks in other domains, such as bioinformatics.
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Abstract. We present a new framework for the online development of
formalized mathematics. This framework allows wiki-style collaboration
while providing users with a rendered and browsable version of their
work. We describe a prototype based on Coq, its web interface as imple-
mented by the second author, and a modified version of the MediaWiki
code-base. We discuss open issues such as dependencies and repository
consistency. We explain limitations of the current prototype and we give
a perspective towards a more robust solution.

1 Introduction

1.1 Motivations

Proof assistants are software tools used for expressing properties and check-
ing proofs of those properties, be it about mathematical concepts or models of
computer systems or software. Nowadays, most proof assistants follow the inter-
active paradigm: the user enters the statement of a theorem; the system checks
the well-formedness of the statement. The user then enters a proof commands
and the systems responds by validating the command and giving the remaining
facts to be proven. This process is then iterated until the proof is complete.
Thus, the resulting sequence of commands, called proof script, has barely any
meaning without the succession of proof states it yields. However, most formal
developments only consist of the bare proof script, maybe with some comments.

Two solutions are available for people who want to understand the proofs
better: HTML rendering and local execution. With web rendering, the proof
scripts are processed by a documentation tool that turns the files into HTML
documents and provides some facilities such as hyperlinks from symbols to their
definition, indexes of symbols and searching. Some even provide pretty-printing
of comments, rendering of mathematical formulae.

But to understand the proof script itself, one has to first locate and download
the files containing the proofs, then install the proof assistant, and finally run
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the proof assistant on the file to inspect the sequence of proof states. When
doing this, one loses the ability to browse the code using hyperlinks, and it can
sometimes be complicated to get the proof assistant to run on one’s computer
in the first place.

Recent work by Kaliszyk[1] shows that the Asynchronous DOM Modification
web technology (sometimes referred to as AJAX or Asynchronous Javascript
and XML [2]) can be used to build a web interface for interactive proof assis-
tants: ProofWeb. This means that users can use their favorite web browser
to run proof assistants sessions, so they can perform themselves the checking of
the formal proof. However this work still lacks essential features: it is not de-
signed to support multi-file developments properly, no proper HTML rendering
is implemented and there are no tools to store and retrieve multiple versions of
files.

A popular web architecture supporting all those features is called wiki. The
wiki concept actually covers many implementations, but all are aimed toward
a cooperative authoring of knowledge repositories. The key feature of a wiki
system is the ability to follow an ‘edit’ link and be able to immediately modify
and publish a new version of the page being viewed.

The popularity of wiki based solutions made us think of integrating the web
interface for proof assistants within a wiki repository: the web interface would
be used as the viewing and editing window for files containing proof scripts. The
main difference between our work and common wiki usage is that our framework
handles formal content that requires a consistent environment (i.e. file dependen-
cies) to run interactive sessions. Thus (semi-)automated maintaining of cross-file
consistency is crucial.

1.2 Related Work

Most proof assistants already have a more or less user-friendly way of rendering
formalisations as a set of interlinked web pages. Some provide a standalone tool
that allows users to render their own files: this is the case for Isabelle[3] and
Coq[4]. Isabelle also provides a way to navigate the dependency graph of multi-
file developments.

The Mizar[5] system has a proof repository called the MML (Mizar Mathe-
matical Library) [6]. This repository is modified by human editors: duplicates
are eliminated, results are moved to appropriate sections, new sections are cre-
ated. This gives the MML a monolithic and consistent look[7]: it is handled as
an encyclopedia, where new content is added with many authors but one central
editing comitee. However, the rendering tool is not available for the common
user to work with his local development. The MML (and its associated journal
JML) is the de facto standard way to publish a Mizar proof.

The Logiweb System[8] provides a way to submit and retrieve articles from
a network of distributed repositories. It allows reliable cross-references to fixed
versions of already published articles. However it still relies on a locally installed
checker to verify articles before submitting them.
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The HELM[9] (Hypertextual Electronic Library of Mathematics) and the
Whelp[10] search engine give users a good rendering of distributed formal li-
braries along with a powerful search engine. The Matita[11] proof assistant offers
native support for queries and browsing of these libraries.

The Logosphere[12] project aims at presenting developments from different
proof assistants (Nuprl, PVS, . . . ) using a unified framework.

The Mizar and Coq proof assistants already have wiki web sites for their doc-
umentation. The Mizar wiki[13] is an official, general purpose web site whereas
the Coq wiki, called Cocorico[14], is a community website more dedicated to the
sharing of specific knowledge about Coq usage, hints and tips, dirty tricks . . .

1.3 The Future of Proof Interfaces

The aim of this new web-based cooperative proof environment is to provide — as
an IT marketing representatives would say — a complete solution for the devel-
opment of formalized mathematics or software verification. It brings together the
availability of a web-interface with the accessibility of a web-rendered archive.

The unique feature of this environment is that, beyond the separation between
the raw editable and rendered read-only versions of the files (a characteristic
of wiki environments), both of those versions can be processed by the proof
assistant at the request of the user, giving him more information as to how the
proof script works. Where standard online formal libraries tend to treat proof
scripts as minor, here their contents can give the user insights on how the proof
was made: the proof script is not write-only anymore.

Therefore, this environment provides a useful tool for specialists to commu-
nicate about proofs with a broader audience: non-specialists, general audience.
It provides a simple way for article writers to give referees easy access to their
formal development.

The repository is also a convenient way for proof authors to work from every-
where simply using a network access, and to learn from others’ proof idiosyn-
crasies.

The repository can also be used for education about proof assistants and
formal logics. A permissions system can allow students to cooperate on multi-
files projects and their supervisor to provide guidance.

1.4 Document Contents

In the rest of the paper we present the technologies relevant for creating a wiki
for proof assistants (Section 2), and the components that are used. Then we
present the global architecture of our system and discuss our library consistency
policy (Section 3). We describe our current prototype (Section 4) and discuss
performance and security issues. Finally, we give our road map towards a more
stable system and present our conclusion (Section 5).
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2 Web Technologies

2.1 Asynchronous DOM Modification

With the growing usage of the Internet, more technologies are available for de-
signers of web services. Recently asynchronous DOM modification technology
has allowed the creation of interfaces that are completely available in a web
browser, but have similar functionality and responsiveness to local ones.

The asynchronous DOM modification technology (sometimes referred to as
AJAX [2] or Web Application) is a combination of three commonly available
web technologies. JavaScript is a scripting programming language interpreted
by the web browsers. Document Object Model (DOM ) is a way of referring to
sub elements of a web page, allowing to modify it on the fly to create dynamic
elements. XmlHttp is an API available to client side scripts, that allows sending
requests to the web server without reloading the page.

The asynchronous DOM modification technique consists in creating web pages
that capture events and processes without reloading the page. Events that can
be processed locally modify the web page in place. For actions that require
interaction with the server, the data is sent using an asynchronous XmlHttp
transaction and the page is modified by the script when receiving the answer,
therefore making the interface as responsive as an application run locally. For a
more detailed description see [1].

One application of this technology is an architecture for the creation of web
interfaces for proof assistants, that are completely available in a web browser,
but resemble and behave as local ones [1]. ProofWeb, an implementation of
this architecture, keeps a prover session for every user on the server (Fig. 1). It
allows similar interaction as ProofGeneral [15] does, but using a web browser.

2.2 Wikis

Wikis are dynamic web sites that behave as static ones: they contain a number
of fixed pages that can link to each other. The unique feature of wikis is that
each of those pages includes an ‘edit’ link that displays the contents of the
page in an editable textbox (or in a more fancy WYSIWYG box in advanced
implementations). This page allows the user to actually modify the contents of
the box and publish the new version on the web site, simply using a web browser.

This is what makes wikis dynamic: this online edition feature requires files
to be served in a more fancy way than just static HTML files. Usually they are
stored in a database system rather than in a filesystem. Unfortunately, current
proof assistants do not include the functionality to access such databases.

The wiki technology is now very popular, especially for documentation of soft-
ware tools: it allows to start with a very small, general (and somewhat imprecise)
documentation which is then improved by visitors when finding inconsistencies,
errors and missing items. The most famous wiki is obviously the Wikipedia web
site, which aims at being an online encyclopedia where information is added
by visitors. In each of the 14 most popular languages on Wikipedia, more than



Cooperative Repositories for Formal Proofs 225

User of ProofWeb

Web
Browser

JavaScript

Web
Server

User’s
Session

User’s
Session

Presented page

handling of
keypresses
and clicks

DOM

Callback

XmlHttp

User’s
Prover

User’s
Prover

Fig. 1. ProofWeb architecture

100,000 articles are available. This shows that the wiki architecture can support
large amounts of data and heavy activity.

The file format used by wikis is usually a simplified markup and formatting
language, tailored to make references to other pages simple to add. Wikis usually
have a permissions system to forbid reading or writing for particular users. Most
of them also allow modification by unregistered users. In that case the IP address
of the client is used as an identifier.

Wikis also offer the possibility to explore the history of any article: what was
modified, when. They allow renaming of pages, and provide indexes of available
pages. They usually include tools that allow searching the page database.

Those features match our requirements for a content management system to
be usable with the ProofWeb framework.

3 Architecture

3.1 Main Components

The system we propose uses proof assistants with some of their companion util-
ities and some web serving utilities. The first element we need is the interactive
toplevel of a prover. It is required on the server side to be able to verify the
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input of the user in an incremental manner and to go to particular positions in
them.

For efficiency reasons some provers allow compilation of their input files. Such
files can then be quickly reused, without verifying all proofs contained in them
again. For such provers we want to use the compiler on the server to generate a
compiled version of proofs that are saved.

Many provers include documentation generators, that process raw prover in-
put files and generate rendered output. The output of a documentation generator
is usually HTML or PDF format. Links between files are created, different con-
ceptual elements of the prover input are colored in different color, and sometimes
mathematical formulas are rendered in a graphical way.

We need to keep a history of versions for every prover file. Usually, collabo-
rative developments are done using version control systems. The source files are
kept in the repository and each user has to build compiled or rendered versions
him/herself.

Not only would we like the source prover files to be stored for all versions, but
also the rendered and the compiled files (for provers that include this concept).
This way users can see a rendered version of older versions of files. Referring to
older versions of compiled files will be discussed in section 3.3.

Wikis already include some kind of versioning of the files they contain. Gen-
erally file versions are numbered in sequence. The user that made every change
is stored with the file, and viewing changes is possible. The history mechanism
is more limited than the ones provided by file versioning systems, but the sim-
plicity can also be an advantage: in particular wikis do not include branches,
tags, etc and the casual user does may not have a good understanding of it.

A wiki infrastructure will be used for tracking changes done by users and
allowing them to see the history of files and changes. It needs to store files in a
way that is accessible by the prover toplevel. The wiki should allow generating
indexes and searching for terms. Most wikis generate text indexes and allow
searching for text only, whereas prover scripts are highly contextual.

Finally we need a web part that allows interactive edition of a proof script in
a way that resembles local work, to allows efficient work. Additionally we would
like to be able to step interactively over the proof regardless of whether we are in
view or edit mode. The ProofWeb framework can be modified to allow those
two modes.

3.2 Global Design

Our architecture is composed of a web server running a modified version of a
wiki that redirects some requests to a ProofWeb server (Fig. 2).

Editors of most wikis are standard HTML textboxes, and the flat text includes
special markup for marking links and elements that should be formatted in a
special way in the read-only version. Recent wikis allow WYSIWYG editing
in an editable IFrame. The HTML formatting introduced by user’s browsers is
combined with wiki links to create the read-only version. In our architecture we
embed the ProofWeb editor as the editor of the wiki. This way, the user can
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edit the script in an interactive way seeing the output of the prover. Additionally
we include a readonly version of the ProofWeb interface for the read-only
version to allow examining the prover state at any point in the buffer.

The next necessary change is the way the wiki stores users files. For every
saved file the wiki tries to compile it and to make a rendered version of it. The
rendered version should be linked with the original, and is therefore stored in
the same way the wiki stores the original in its database. Whenever the user
requests the file for viewing or editing one of those two versions is used. The
compiled version is stored as a standard file in the filesystem in order to make
it available to the compiler and to the toplevel used in prover sessions on files
that refer to this compiled file.

This change in the wiki behavior should not prevent users from storing and edit-
ing standard wiki pages in the repository. Those would include textual description
of the formal content, discussions, tutorials with hyper-links to formal content.

The documentation generators of provers have to be able to generate a wiki
compatible output. The format that a wiki displays is usually very close to
HTML which many prover documentation generators already support. The im-
portant difference with respect to HTML is that since we will process the ren-
dered version of the script we need to be able to distinguish active parts of the
file from comments.

3.3 Consistency Issues

In usual wikis links to nonexistent pages lead to a new editable page. This is per-
fectly acceptable for the usual informal content but not for a formal development
referring to another: think of it as a program missing libraries.
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Moreover, we need to make sure that dependencies are always consistent. Files
in the database can depend on each other, sometimes in an indirect (transitive)
way. First of all, we want to require all saved files to be valid (compilable); they
can still contain incomplete proofs terminated with the Coq Admitted keyword
or its equivalents for other provers. For a valid saved file we want to ensure that
the current version remains valid after changes to the files it relies on. Some
provers already include compatibility verification mechanisms. Coq stores the
checksums of files to ensure binary compatibility between compiled proofs. To
solve the problem, we have to consider the static and the dynamic approach.

The dynamic approach is the convention that a file always refers to the latest
versions of other files. It means that saving any change to a file will induce a
costly recompilation of all files it depends on. Another problem is that changing
definitions deep inside a library will make many developments incompatible and
thus correct files will stop working. Saving only valid files does not solve this
problem since the objects they contain (their interface) might be modified too.
This approach also makes older versions of existing files immediately obsolete.

The opposite approach is static linking, where a saved file always refers to the
same version of other files. In other words, we never change a file, but rather
add a new version of that file, with a fresh name. This means that the user
will have to manually update the version number of files that are referred to if
newer versions of those become available. The main advantage of this approach
is that of integrity: provided you can safely assign new version numbers, you can
enable concurrent access. Moreover, changing a file will never break another file.
However, when changing a file deep in the library, one has to manually modify
all the files in the dependency chain between that file and the files in which the
changes should be reflected, which can sometimes be quite heavy.

3.4 Towards a Hybrid Approach

We believe that the static approach is a more adequate way to store older (his-
torical) versions of a given file, whereas up-to-date files should use the dynamic
approach towards dependency. This way, older versions of files still make sense by
statically referring to older versions of files they depend on. The latest versions
can remain up-to-date with their immediate dependencies by being dynamically
linked to them, i.e. recompiled when new versions of those files are saved. It
might happen that such a file might not be valid anymore because of changes
made to its dependencies: to keep validity we have to make it link statically to
the suitable previous version.

To help with this version compatibility issue, we propose a three-colour scheme:

– A file is labelled as red (i.e outdated) if it depends statically on an older-
than-latest version of another file.

– A file is labelled as yellow (i.e tainted) if it depends only on the latest versions
of other files, and one or more of those files have a yellow or red status. Yellow
status thus tracks the files which are indirectly lagging behind.
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– A file is labelled as green (i.e. up-to-date) if it depends only on the latest
versions of other files, and all those files are also labelled as up-to-date (green
status).

The separation between the yellow and red files comes from the fact that red
files have to be manually updated to become green again (i.e. by creating a new
version of them), whereas yellow files might be fixed by updating the red files
that taint them.

The switching to red status can be automated by rewriting Require state-
ments on-the-fly to make them refer statically to the last suitable version of the
file depended on. This means that fixing a red file can give red status to yellow
files that it was tainting, thus pushing the problem upwards in the dependency
tree.

If the user wants to export a file together with its dependencies from the
repository, a mechanism can be used to convert long file names (with version
number) to short ones. The case might arise where a file would refer, directly or
by transitivity, to an old version of itself. We can either forbid this or generate
fresh file names using standard suffixing techniques.

The procedure of updating the prover itself, although intended to be rare,
will be critical. Here a decision will have to be made whether to port all possible
versions or only the newest versions of each files and their dependencies. The
current system is clearly not yet designed to enable such updates without putting
it offline and porting files manually, but such a feature should definitely be
designed and implemented.

4 Prototype

4.1 Implementation

To experiment with our idea, we have created a prototype implementation based
on off-the-shelf components as much as possible. We chose Coq as our target
proof assistant. We used the MediaWiki code-base, the coqdoc documentation
generator for Coq and ProofWeb for Coq (Fig. 3). The coqdoc tool was mod-
ified to generate wiki format rendered pages.

When the user opens a page of our wiki, he/she is presented with a viewing
page where the usual contents area is replaced by three subframes. One frame
shows the rendered version of the current document, the second one shows the
current proof state and the third one displays the Coq error messages.

The user may press the ’up’ and ’down’ buttons to step over the proof and
examine both the proof state and Coq messages. A background coloring scheme
allows the user to keep track of the part of the script that was already processed.

The proof is rendered, that is identifiers are colored and linked to their defi-
nition, mathematical LATEX comments are rendered, links to internal wiki pages
lead to those wiki pages and links to Coq standard library objects lead to the
documentation on the Coq website (Fig. 4).
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Fig. 3. Data flow diagram for our prototype wiki

The page also includes standard wiki elements, one of which is the ’edit’
button. When the user starts editing the page, a similar page is presented, but
with the raw proof script (no rendering) in a modifiable text box. The user may
modify the script and use the ’up’ and ’down’ buttons to step over the proof in
a similar way as in the view mode (Fig. 5). The processed part of the buffer is
frozen.

When satisfied with his work, the user can save the proof. The contents of the
buffer are processed in three ways:

– The raw script is saved in the database, to be used by following edits.
– The file is compiled and the corresponding .vo file is stored in the filesystem

for processing of files that would include it using Require statements.
– A rendered version is generated by coqdoc and saved in the database to be

displayed in view mode.

The user can see the history of any page as well as display the differences
between the sources of any versions, using built-in MediaWiki routines. The
textual search mechanism allows to query the source Coq files for any terms.

4.2 Security and Efficiency

The security and efficiency of the server are crucial since unavailability of the
proof wiki would make the users not only unable to work, but also unable to
access their own files. The security and efficiency of the architecture relies on
the security of ProofWeb, the underlying wiki, the compilation and rendering
processes and the communication mechanism.
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Fig. 4. Screenshot of the prototype showing the rendered version of a a Coq file. The
verified part of the edit buffer is colored. The state buffer shows the state of the prover,
there are no Coq warnings.

Fig. 5. Screenshot of the prototype showing the editing of the corresponding source
file. The verified part of the edit buffer is colored and frozen.

The security and efficiency of ProofWeb are described in detail in [1], we
remind here the most important issues. The solution adopted is sandboxing: the
ProofWeb server process is run in a chrooted environment as a non privileged
user without network access. The permissions include only reading server files
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and executing prover toplevels. Provers are run as different users with a modified
scheduling policy and have rights to read only the prover libraries and to write in
designated subdirectories. For provers that are based on programming language
toplevels issuing toplevel commands can be disabled. Finally to disallow storing
overly large amounts of data filesystem quota is used.

The sandboxing which is a part of the ProofWeb architecture makes it rea-
sonably safe. The efficiency is divided by the number of users, but it is straight-
forward to distribute prover sessions over a set of machines. We are additionally
running a Coq dependency generator, compiler and renderer. We run these pro-
cesses in the same sandbox as the prover toplevel, so we expect them to be
comparably secure. However for big formalizations performing the compilation
can be costly. Specially when many files depend on each other, modification of
one of them may require recompiling numerous proofs. We expect this to be the
main bottleneck of a wiki for proofs. Although this can also happen with local
proof interfaces, here multiple parallel sessions might overload the system for a
longer period.

The proof text verification that ProofWeb does is independent from page
serving performed by the web server and MediaWiki, so we can analyse the lat-
ter separately. Wikis are quite secure and efficient. At the time we are writing
this article, Wikipedia provides servers that have more than 3 million users and
1.6 million articles without significant efficiency issues. An issue that is often
a problem in wikis is vandalism. Disallowing edition by particular users or IP
addresses is a common practice, and is already supported in MediaWiki. Dis-
covering vandalism in our framework may sometimes be easier than in standard
wikis, since incorrect proofs no longer compile.

The data that is being transferred to and from the wiki is usually public, still
the communication mechanism can be secured by configuring the web server
that serves the wiki to use HTTPS.

If the wiki is secured properly we do not expect crackers to be an important
issue. However the efficiency seems to be quite fragile, in particular it seems that
our architecture is quite vulnerable to denial-of-service attacks.

4.3 How to Integrate Other Provers

Although our prototype has been implemented for Coq, we do not rely on any
specific Coq feature. We think that extending the wiki to other provers is feasible
provided the following functionalities are available: wiki compatible documen-
tation renderer, dependency generator, ProofWeb support and optionally an
index generator.

The renderer does not need to be sophisticated, the only mandatory feature
of the renderer is distinction between active proof script from comments. Other
features like syntax highlighting and links are not necessary, although they allow
a more wiki-like interaction.

The wiki needs to know how to call the dependency generator of the prover,
to know what files need to be updated if a particular file is modified. If the
prover has a compiler, the wiki needs to know how to compile proofs. The wiki
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also needs to be able to identify statements that refer to other files during the
interactive session.

An optional element is an index generating utility. It is needed for the wiki to
distinguish concepts from the new prover’s language. This allows not only nice
index pages in the wiki, but also searching for particular prover objects, like only
definitions or theorems.

Finally ProofWeb needs to be able to interact with the prover. It already
supports some provers. To extend it to a new one, the client part needs to know
how to find the ends of complete prover commands and the server part needs to
know how to interface with the prover process, in particular it needs to know
how to check if commands succeed and how to undo. The details of extending
ProofWeb to a new prover are described in [1].

5 Conclusion and Future Work

5.1 Future Work

The current architecture of the prototype is not satisfying since it relies on a
double storage of files: in the database, and on the disk. We are also limited by
the way MediaWiki handles its name space. If we adopt the static system where
files are never modified, it can be worthwhile to consider moving all the data to
the file system, and adopting an architecture where we can have a better control
of the name space.

The static naming will require to implement a versioning system for the substi-
tution of Require statements and the distributed generation of version numbers,
then the three colour scheme will be added. A mechanism for importing and ex-
porting parts of the library will also be necessary, to allow users to have a local
copy on which to work without Internet access.

A milestone in this development will be the ability to actually import the Coq
standard library and official users contributions to our repository. Only then will
we be able to get user feedback and report on the suitability of the repository
for Coq users.

The coqdoc tool is able to generate index files that contain all constants
occurring in the library. We could use such a a feature to generate such wiki
pages.

The basic textual search is very limited and proof assistants users often need
query types that are far beyond the scope of textual search: find theorems about
a given object or do pattern matching on theorem statements. This might be
achieved by adapting the Whelp search engine to search our database: it will
require a customisation of the indexing technology.

We could also experiment with more advanced rendering tools such as Helm
and consider using MathML instead of (currently) HTML with LATEXimages.

5.2 Conclusion

Although our prototype is still at a very early stage of development, our idea
of combining a wiki web site with the ProofWeb interface looks definitely
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promising. Surprisingly, we could achieve the current result without many mod-
ifications neither to the wiki code-base, nor to ProofWeb. Most of the work
was devoted to database modification and rendering.

We believe that formalising mathematics in a wiki system will foster more co-
operation both within prover specific communities and between users of different
provers, especially if we can make several provers coexist in the same repository.
We also believe that such a project can act as a display of the work on formal
proofs for a wider audience.
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Abstract. One major goal of Mathematical Knowledge Management
is building extensive repositories, in which the mathematical knowledge
has been verified. It appears, however, that maintaining such a reposi-
tory is as hard as building it – especially for an open collection with a
large number of contributors. In this paper we argue that even careful
reviewing of contributions cannot cope with the task of keeping a math-
ematical repository efficient and clearly arranged in the long term. We
discuss reasons for revisions of mathematical repositories accomplished
by the “core implementors” and illustrate our experiences with revisions
of MML, the Mizar Mathematical Library.

1 Introduction

Mathematical knowledge management aims at providing both tools and infra-
structure supporting the organization, development, and teaching of mathemat-
ics using computers. Large repositories of mathematical knowledge are here of
major concern since they provide users with a base of verified mathematical
knowledge. We emphasize the fact that a repository should contain verified
knowledge only: we believe that (machine-checkable) proofs necessarily belong to
each theorem and therefore are an essential part of a repository. For repositories
in the sense of Mathematical Knowledge Management community this implies
even more: proofs should not only be understandable for the machine, but also
– for human users of the repository.

From this follows that mathematical repositories are more than collections of
theorems and proofs accomplished by a prover or proof checker. The overall goal
is not proving a theorem – though this still is an important and challenging part
– but presenting definitions and theorems so that the “natural” mathematical
buildup remains visible. Theories and their interconnections must be available,
so that further development of the repository can be based upon these. Being
not trivial anyway, this becomes even harder to assure for an open repository
with a large number of authors.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 235–249, 2007.
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So, how to tackle this task? One possibility, of course, is reviewing submis-
sions. Reviewing improves the quality of knowledge and proofs added to the
repository, but we shall illustrate that in the long run reviewing cannot en-
sure that a mathematical repository meets the demands mentioned above. We
therefore claim that revisions are an essential part of maintaining mathematical
repositories: in order to keep it clean and attractive for users, from time to time
a “core team” has to check and improve the organization, quality, and proofs of
a mathematical repository.

In the following section we describe and discuss the goals and benefits of
revisions compared to a straightforward reviewing process. Then, after a brief
introduction to the Mizar system [11], we consider the reviewing process for
submissions to MML in Section 3. We describe reviewing criteria and show which
insufficiencies can be handled by reviewing. In contrast, Section 4, is devoted
to revisions of MML illustrating on the one hand what kind of improvements
reviewing cannot perform, on the other hand the role of revisions in maintaining
MML. This is the process done mainly by human hand as of now, in the next
section we discuss some issues concerned with this activity and describe some
traps the developer could meet when enhancing the library. Then we conclude
showing some related work and drawing some remarks for future.

2 The Need for Revisions

The goal of a revision is to improve the mathematical repository. In contrast to
reviewing submissions, however, here the attention is turned to the repository
as a whole, not to a single, new part of it. Consequently, motives for revisions
can be for example:

– keeping the repository as small as possible,
– preserving a clear organization of the repository in order to attract authors,
– establishing “elegant” mathematics, that is e.g. using short definitions (with-

out unnecessary properties) or better proofs.

Note that all these points characterize a qualitative repository and can hardly
be achieved by reviewing single submissions. Of course there are different possi-
bilities to achieve the points mentioned. Improving the prover e.g. can shorten
proofs and hence – simplify the repository. (Re-)organizing a mathematical
repository probably demands manipulating the whole file structure, not only
the files themselves. Therefore we decided to classify revisions based on their
occasion, that is on which kind of insufficiency we want to address. Based on
our experiences with the Mizar Mathematical Library we distinguish four major
occasions for revisions:

1. improving authors’ contributions;
2. improving the underlying prover or proof checker;
3. reorganizing the repository;
4. changing representation of knowledge.
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Improving an author’s contribution is the classical task of reviewing and is
of course to be recommended for mathematical repositories too: nomenclature
can be polished up to fit to the yet existing one, definitions can be improved,
that is e.g. generalized if appropriate. Proofs are also a matter of interest here,
especially keeping them as short as possible, yet still understandable is of major
concern. In a large, open repository however, authors sometimes may prove and
submit theorems or lemmas not being aware that those are already part of the
repository. Similarly, special versions of already included theorems can happen
to be “resubmitted”. It is doubtful, that this kind of flaws will be detected by
ordinary reviewing.

Strenghtening the underlying prover or proof checker has also an impact on
the repository. Proofs can be shortened or rewritten in a more clear fashion,
both being fundamental properties of attractive mathematical repositories. Even
more, theorems in such collection may now be superfluous, because the improved
prover accepts and applies them automatically. A typical example here is the
additional inclusion of decision procedures.

Reorganizing the repository deals with the fact that a repository is built up
by a large number of contributors. For their development authors (should) use
already existing theories as a basis. To establish their main results, however,
they often have to prove additional theorems or lemmas just because the theory
used does not provide them yet. So, these additional facts have to be put in
the right place of the repository. Otherwise, it will be hard for other authors to
detect them or at least searching the repository becomes less comfortable. In the
same direction goes the building of monographs: a frequently used theory should
be handled with extra care. Not only should all related theorems be collected in
a distinguished place, but also still lacking theorems be complemented, in order
to ease working for further authors. These tasks can only be accomplished when
considering the repository as whole, that is by revisions.

The last point concerns the development of a repository in the long term.
What if after while it turns out that another definition or representation of
mathematical objects would serve our purposes better than the one chosen?
Should it be changed? Note that a lot of authors already could have used these
objects in their proofs, that is changing the definition or representation would
imply changing all these proofs – and of course one cannot force authors to
redo all their proofs. On the other hand, including both definitions or represen-
tations leads to an unbalance: the theory of the new prefered version is much
less developed than the one of the old version, so authors hardly will base their
developments on the new one. Again, the solution is a revision: In the best case
definitions and representations are changed by a “core team”, so that ordinary
users can furthermore use all theorems without even noticing they changed.

In the following sections we will illustrate these considerations by examples
taken from the Mizar Mathematical Library and in particular show how revisions
maintain mathematical repositories.
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3 Review of MML Submissions

Reviews of submissions to the MML – as reviews of ordinary submissions for
conferences or journals – have the overall goal to check whether a submission
should be accepted (for inclusion into the MML) and simultaneously improve
the quality of a submission. For mathematical repositories, however, the criteria
for acceptance and improvements are somewhat different.

Certainly the contents of a submission for a repository should likewise be
original and interesting. Original here, of course, means that definitions and
theorems presented are not part of the repository, yet. This is easy to check for
the main theorem of a submission. For technical lemmas used to establish this
main result, however, this task is much more difficult. So, for example, a reviewer
will probably neither know nor be willing to check whether a theorem like

theorem

for F,G being FinSequence, k being Nat st

G = F|(Seg k) & len F = k + 1 holds F = G ^ <*F/.(k+1)*>;

is already included in a repository. Even if the textual search via grepping is
no longer the only method to find such repetitions since the MML Query by
Grzegorz Bancerek [3] is available, even after the volunteer will learn how to use
this system, still there is no single automated bunch of tools which removes all
repeated theorems effectively. Furthermore, the motivation to check these things
in detail will be even decreased, because such a point will not decide between
acceptance and rejection.

The question whether a submission is interesting should be handled more lib-
erally. Of course, the usual issues, that is the quality of the main results, apply
here also. There is, however, another kind of submissions to repositories: the
one that deals with the further development of (basic) theories. This concerns
collections of basically simple theorems providing necessary foundations so that
more ambitous developments can be easier accomplished. Usually, these are the-
orems, that easily follow from the definitions, however are so often used, that
repeating the proof over and over again is hardly acceptable. Examples here are
the theories of complex numbers or polynomials, where among other things we
can find the following theorems.

theorem

for a,b,c,d being complex number st

a + b = c - d holds a + d = c - b;

theorem

for n being Ordinal,

L being add-associative right_complementable add-left-cancelable

right_zeroed left-distributive (non empty doubleLoopStr),

p being Series of n,L holds

0_(n,L) *’ p = 0_(n,L);

Though hardly interesting from a mathematical point of view, such theorems
are important for the development of a repository and should therefore be con-
sidered as interesting, too.
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Improvements of a submission are a more difficult issue. Firstly, we can con-
sider definitions and notations contained in the submission. Can they be arranged
more sparsely, that is can the results be established based on fewer axioms? Is
it possible or reasonable (in the actual repository) to generalize the definitions?
This also applies to theorems. Note that the theorem from above, though appli-
cable to polynomials, in fact is stated for power series. Again to address these
issues a high knowledge of the repository by the reviewers is necessary.

Secondly, when it comes to proofs, there are hardly any guidelines, because
proving in particular is a matter of style. We can hardly force an author to change
his (finished) proof into another one using completely different proof techniques.
What we can do, is to suggest improvements for the presented proof. We can,
for example, propose a more accurate use of the proof language to get more
elegant or better readable proofs. Or we can give pointers to other theorems in
the repository that allow to shorten the proof.

Based on these considerations a reviewing process for Mizar articles, that is
for submissions to the Mizar Mathematical Library, has been introduced. Using
basically the commonly used scheme accept/revise/reject (and apart from its
descriptive grade) the rating of a submission can be1

A. accept
requires editorial changes only, which can be done by the editors

B. accept
requires changes by the author to be approved by the editors

C. revise
substantial author’s revisions necessary, resubmission for another review

D. decision delayed
revision of MML necessary

E. reject
no hope of getting anything valuable

The most important issue here, of course, is the question whether an article
should be included in MML. Note, that there are two grades (A and B) for
acceptance. The reason is that accepted articles should be included in the MML
as soon as possible to avoid duplication of results during the reviewing phase.2

So, while submissions rated B or C need feedback from the authors, submissions
rated A can be added to MML without further delays.

The most interesting point is D. Note that here already the problem of a
revision of the whole repository is addressed. Reviewing can point out that –
though the author has proven his main results – the way Mizar and MML support
establishing the presented results is not optimal and should be improved.

As the most notable example here, we can cite the newly submitted definition
of a kind of a norm for the elements of the real Euclidean plane, which are
defined in the Mizar library just as finite sequences of real numbers.
1 There has been and is still going on an email discussion about these options.
2 There even has been the proposition of making public submissions before reviewing

to avoid this problem, but we are not aware of a definite decision concerning this
point.
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definition let n be Nat, f be Element of TOP-REAL n;
func |. f .| -> Real means
ex g being FinSequence of REAL st
g = f & it = |. g .|;

end;

where |. g .| is a usual Euclidean norm which was introduced in the MML
before as

definition let f be FinSequence of REAL;
func |. f .| -> Real equals

:: EUCLID:def 5
sqrt Sum sqr f;

end;

After the change of the loci type (the submission obtained grade D, of course)
from FinSequence of REAL into real-yielding FinSequence in the EUCLID
article the earlier definition was no longer needed which helped to simplify the
structure of notions in this new submission.

The decision is not a typical result of majority voting, because referees giving
C grade point out possible improvements, so usually the lowest grade counts
(luckily, in case of E marks, all three referees agreed).

To summarize the grades for 2006, let us look at Table 1.

Table 1. Number of submissions to the MML and their grades in 2006

all A B C D E
items 39 6 4 20 6 3

% of total 100 15.4 10.2 51.3 15.4 7.7

Basically, all ten submissions graded A and B were included into the MML,
and among C and D candidate articles, which were returned to authors, other
15 were accepted; in total there were 25 Mizar articles accepted in 2006, the first
year the reviewing procedure as described above was introduced.

All in all we have seen that reviewing MML submissions indeed addresses only
the first point mentioned in Section 2. Of course a thorough reviewing process
will improve the quality of MML articles and may even pilot authors into the
direction of a good style of “Mizar writing”. As we can conclude from Table
1, this is the case of the majority of submissions because the authors should
enhance the articles according to the referees’ suggestions. However there remain
situations in which the MML as a whole should be improved; in the long term
mere reviewing of submissions cannot avoid this. Here even carefully reviewing
of Mizar articles – as already indicated by rate D above – can only help to detect
the need for such revisions.
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4 MML Enhancing

The Library Committee has been established on November 11, 1989. Its main
aim is to collect Mizar articles and to organize them into a repository – the MML.
Recently, from this agenda a new additional one was created – the Development
Committee, which takes care of the quality of the library as a whole.

4.1 Types of Revisions

For the reasons we tried to point out before, the Mizar Mathematical Library is
continuously revised. Roughly speaking, there are different kinds of revisions:

– an authored revision – consists of small changes in some articles in the library
when somebody writing a new article notices a theorem or a definition in
an old article that can be generalized. This is also the case of D grade
as described above. To do this generalization, sometimes it is necessary to
change (improve) some older articles that depend on the change. As a rule,
a small part of the library is affected.

– an automatic revision – takes place frequently whenever either a new revision
software is developed (e.g. software for checking equivalence of theorems,
which enables to remove one or two equivalent theorems) or the Mizar verifier
is strengthened and existing revision programs can use it to simplify articles.

– a reorganization of the library – although was very rare before, as of now
it happens rather frequently. It consists in changing the order of processing
articles when the Mizar data base is created. Its main steering force is the
division of the MML into concrete and abstract parts.

4.2 MML Versions

Apart of the Mizar version numbering, the MML has also separate indexing
scheme. As of the end of 2006, the latest official distribution of the MML has
number 4.76.959.

As a rule, the last number, currently 959 shows how many articles are there
in the library (this number can be sometimes different because 26 items were
removed so far from the MML, but some additional items such as EMM articles,
and “Addenda” which do not count as regular submissions, were added). The
second number (76) changes if a bigger revision is finished and the version is made
official. Although it is relatively small comparing with the age of the library, the
changes are much more frequent.

4.3 Some Statistics

The policy of the head of Library Committee – to accept virtually all submis-
sions from the developers and, if needed, enhance it by himself, was then very
liberal. For these nearly twenty years there were only three persons taking a chair
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of a head of the Committee (Edmund Woronowicz, Czes�law Byliński, and cur-
rently Adam Grabowski); their decisions were usually consulted with the other
members of the committee, though.

Such an openness of the repository was justified: in the early years of the
Mizar project the policy “to travel to Bia�lystok and to get acquaintance with
the system straight from its designer” resulted in the situation all authors knew
each other personally, now the situation changed.

The MML evolved from the project, frankly speaking, considered rather an
experiment of how to model mathematics to allow many users benefit from a
kind of parallel development. Now, when the role of the library is to be much
closer to the reality and the MML itself is just one among many mathematical
repositories, the situation is significantly different.

Table 2. Submissions to the MML by year

Year Add. 1989 90 91 92 93 94 95 96 97 98 99 2000 01 02 03 04 05 06
Articles 19 65 136 46 48 33 33 35 57 39 47 65 54 33 42 54 80 48 25

As it can be seen, the first two years were extremely fruitful. No doubt, the
first one was most influential, when the fundamentals, such as basic properties of
sets, relations, and functions, the arithmetics, and vector spaces were established
– to enumerate among many these most important. Some articles from that time
were more or less straight translation from those written in older dialect of the
Mizar language (Mizar PC, Mizar-2 etc., see [9]). Especially the subsequent year
– 1990, when many authors could benefit from introducing the basics, hence
they were able to work on various topics in parallel, brought into the Mizar
Mathematical Library the bigest number of submissions so far (136 by year),
then the number stabilized.

4.4 Towards Concrete and Abstract Mathematics

As it was announced in 2001 [15], the MML will be gradually divided into two
parts. As the library is based on the Tarski-Grothendieck set theory, the part
devoted to the set theory (and related objects, as relations, functions, etc.) is
indispensable. There is, however, huge amount of knowledge for which set theory
is essential, but basing on the notion of structure by means of the Mizar language.

There are three parts of the Mizar Mathematical Library:

– concrete, which does not use the notion of structure (here of course comes
standard set theory, relations, functions, arithmetic and so on);

– abstract, i.e. STRUCT_0 and its descendants, operating on the level of Mizar
structures; both parts are not completely independent – here the concrete
part is also reused (abstract algebra, general topology including the proof of
the Jordan Curve Theorem, etc.);
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– SCM, the part Random Access Turing Machines are modelled, i.e. mathe-
matical model of a computer is described.

This division is reflected in the file mml.lar in the distribution in which is
the order of processing of articles when creating Mizar data base is given – the
“concrete” articles go first, at the end are those devoted to the SCM series. The
process of separating these three parts is very stimulating for the quality of the
Mizar library – many lemmas are better clustered as a result of this activity.

As of the beginning of 2007, the division can be summarized in Table 3.

Table 3. Three parts of the MML

Part Number of articles % of total
concrete 266 27.70
abstract 640 66.67

SCM 54 5.63
Total 960 100.00

Note that apart of the revisions suggested by the referees when giving D-
grades, any user can via TWiki mechanism suggest the change; he may of course
also send improved version via email to the Library Committee; as an exam-
ple, lemmas needed for the Gödel Completeness Theorem were reformulated to
provide its better understanding as a result of the external call.

4.5 Library Management

As a first tool of collaborative work on the library we can enumerate Mizar TWiki
(wiki.mizar.org) which gradually changes its profile from an experimental –
and rarely used – forum into the place where suggestions/experiences with the
MML can be described.

As the most important, and probably one of the better known MML tools,
we can point out MML Query [3]. It has proven its feasibility when subsequent
EMM items were created. Also researchers, when writing their Mizar articles,
can find it useful. But usually, typical author does not care too much if his
lemma which takes some ten lines of Mizar code is already present in the library.
Actually, searching for such auxiliary fact can take much more time than just
proving it. This results in many repetitions in the library MML Query cannot
cope with. And although the author can feel uncomfortable with multiple hits of
the same fact, annotating such situations and reporting it to the MML developers
is usually out of his focus.

This is the area where another tool comes in handy. Potentially very useful
for the enhancement of the MML as a whole, MoMM (Most of Mizar Matches)

wiki.mizar.org
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developed by Josef Urban was primarily developed to serve as assistant during
authoring Mizar articles [18]. It is a fast tool for fetching matching theorems,
hence existing duplications can be detected and deleted from the MML (accord-
ing to [18], more than two percent of main Mizar theorems is subsumed by the
others). The work with the elimination of these lemmas is still to be done –
many of detected repetitions are useful special cases so their automatic removal
is at least questionable.

Another popular software, MML CVS – the usual concurrent version system
for the MML was active for quite some time, but then was postponed because
the changes were too cryptic for the reader due to the lack of proper marking of
items. Actually, one of the most general problems is that there are no absolute
names for MML items and the changes are usually too massive to find out what
really matters.

5 Traps for the Developer

Usually, the revision process via generalization of notions improves the MML.
There are some dangerous issues, however; we address some of them in this
section.

5.1 Mind the Gap!

Let us cite an example from the article ABIAN [14]:

definition let i be Integer;
attr i is even means

:: ABIAN:def 1
ex j being Integer st i = 2*j;

end;

These are usual definitions of odd and even integer numbers.

definition let i be Integer;
attr i is odd means
ex j being Integer st i = 2*j+1;

end;

Then, among the others, the theorem stating that all integer numbers are ei-
ther odd or even, was proven; the proof was very simple, but there was something
in it to do, at least both definitions were involved.

theorem LEM:
for i being Integer holds i is odd or i is even;

However, after the revision (which was done by the author of ABIAN, after
all), the second definition got simplified as follows:
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notation let i be Integer;
antonym i is odd for i is even;

end;

Still, it seems perfectly correct, introducing antonym we obtain the law of
excluded middle automatically, in a sense, and the proof of the above lemma
labeled LEM was no longer necessary.

But we made a step too far, as it seems. Because in the definition of even
number, the integerwas not needed (remember the type Integer is a shorthand
for integer number), it was dropped in both – definition of an attribute and its
antonym, and the latter got simplified into the form:

notation let i be number;
antonym i is odd for i is even;

end;

Unfortunately, e.g. number Pi (the Mizar symbol for the usual constant π)
can be proven to be odd which can be considered really odd. Observe that any
automation of the process of dropping assumption about the types of used loci
in the definition of attributes, however possible, could be dangerous.

5.2 Permissive Definitions

There are two unities for vector spaces defined in the MML – with symbol 1.
and 1_, and the following definitions:

definition let FS be multLoopStr;
func 1.FS -> Element of FS equals

:: VECTSP_1:def 9
the unity of FS;

end;

definition let G be non empty HGrStr such that G is unital;
func 1_G -> Element of G means

:: GROUP_1:def 5
for h being Element of G holds h * it = h & it * h = h;

end;

where multLoopStr is HGrStr enriched by an additional selector, namely unity
and the adjective unital in the permissive assumption (after such that) assures
that the proper neutral element exists.

At first glance, the earlier approach is better – the less complicated a type
in a locus, the less problems we have to assure the required type. In the second
definition however, the underlying structure has only two selectors instead of
three.
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5.3 Meaningless Predicates

Suppose we have the following:

definition let a,b be natural number;
assume a <> 0;
pred a divides b means
ex x being natural number st b = a * x;

end;

Well, we can freely delete the assumption, in Mizar predicate definitions do
not require any correctness conditions proven. But, if we forget for a while that
within the MML division by zero is defined, does it make any mathematical
sense for any pair of natural numbers? According to the current policy of the
Library Committee, we allow for any such underspecification.

5.4 Apparent Generalizations

There are sometimes cases the price for the revision is too high comparing to
gains or the enhancing is apparent. If we remind that pathwise connectedness of
the topological space T denotes the existence of a function from the unit interval
into T which has the values a and b in 0 and 1, respectively, for any pair of points
a, b of T , a path between two points is just an underlying mapping, if it exists.
It is enough however to have an assumption about the existence of appropriate
function for just the pair of points currently under considerations.

definition let T be TopStruct; let a, b be Point of T;
assume a, b are_connected;
mode Path of a, b -> Function of I[01], T means

:: BORSUK_2:def 2
it is continuous & it.0 = a & it.1 = b;

end;

With no doubt, the assumption of the existence of a path not for arbitrary, but
just for these two fixed points is more general, the gains from stating every now and
then that considered two points can be connected by a path, are at least doubt-
ful. Similarly, we often write Abelian add-associative right_zeroed right_
complementable RealLinearSpace-like (non empty RLSStruct) dropping an
attribute or two to have slightly more general setting instead of using the mode
RealLinearSpacewhich is equivalent to that complicated string above.

6 Related Work

Contemporary standards of the publishing process open some new possibilities –
there are many journals online, Springer also announces his books/proceedings at
their webpage. Paper-printed editions have some obvious limitations, vanishing
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for electronically stored and managed repositories of knowledge. We can notice,
as an example, new functionalities of [10] in comparison to (even online) version
of Abramowitz and Stegun [1].

Of course, what is published on paper, is fixed. We can mind some real-
life situations – rough sets as an example of obtaining new results via a kind of
revision process (originally considered to be classes of abstraction with respect to
some equivalnce relation, then some of its attributes were dropped to generalize
the notion – see [6], [7]); also Robbins algebras and related axiomatizations
of algebras are a good example, when a classical problem could be rewritten
and reused when solved. In the aforementioned examples these were subjects
for another papers, within the computerized repository the enhancement (the
generalization of results) can be obtained via revision process.

As a rule, building an extensive encyclopedia of knowledge needs some in-
vestment; on the one hand, it can be considered by purely financial means as
“information wants to be free, people want to be paid” [2]. That is the way
Wolfram MathWorld [19] has been raised, as a collection closed in style, in fact
authored by one person, Eric Weisstein.

But right after this service has been closed due to the court injunction, it soon
appeared that the need to bridge this gap is that strong – many volunteers were
working to develop a concurrent service to that of Wolfram’s, but of the more
open type, based on the mechanism similar to Wiki.

The effort of PlanetMath is now a kind of Wikipedia for mathematics (in fact
they even cooperate closely); with its content somewhat questionable because
virtually anyone can contribute, but frankly speaking, also nobody really asks
about the verification of other, even commercial resources. Although we believe
the use of proof checkers could enable the automatic verification of the proofs;
still the correctness of the definitions, i.e. how the encoded version reflect real
mathematical objects, is under question only human can answer to a full extent.

But even in the projects of GNU type, people want to get their payment
in another form: at least the added annotation such as “This article is owned
by...”, as in PlanetMath, which can also be considered a kind of motivation
to keep higher standards of the encyclopedia since the authorship is not fully
anonymous.

In the MML the authorship is somewhat fixed, there were however, espe-
cially recently, cases when the parts of submissions moved between them so that
the authorship actually exchanged (as for example, with the formalization of
the Zorn Lemma, originally created by Grzegorz Bancerek, and now, after the
changes concerned with the move of this article to the concrete part, attributed
to Wojciech Trybulec). In a sense, the Mizar library is much closer to Planet-
Math, but the official distributions are created by the Library Committee which
decides about the acceptance of revisions.

7 Conclusions

To meet the expectations of researchers being potential users of repositories of
mathematical knowledge, such collections cannot be frozen. The availability of
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the contemporary electronic media open new directions of the development of
the new encyclopedias yet unavailable for their paper counterparts. The need of
the enhancement stems not only of the fact there may be some obvious mistakes
in the source; the reasons are far more complex.

In the paper, we tried to point out some of the issues connected with the mech-
anism of revisions performed on the Mizar Mathematical Library, large repos-
itory of computer-verified mathematical knowledge. The dependencies between
its items and the environment declaration (notation and especially, constructors)
are as of now too complex to freely move a single definition or a theorem between
separate articles.

In our opinion, the current itemization of the MML into articles does not fit
the needs we expect from the feasible repository of mathematical facts; if we
try to keep authors’ rights unchanged, there is an emerging need to have some
other, smaller items which guarantee the developer’s authorship rights, a kind
of ownership similar to that used in the PlanetMath project.

Also the better automation of the MML revision process is strongly desirable.
However possible, at least to some extent, but due to some difficulties which can
be met as we pointed out, the human supervision of such automatic changes will
probably always be needed.
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Abstract. Logiweb is an open source, distributed system for publica-
tion of machine checked mathematics. It covers all aspects of electronic
publishing: high typographical quality, archival, handling of references
to previously published results, and publication of refereed volumes. The
present paper is itself produced using Logiweb; and the paper is formally
correct in the sense that it has been verified by Logiweb. The paper de-
scribes the implementation layers of the Logiweb system as seen by the
user: the programming layer, the metalogic layer, the tactic layer, and
the object proof layer.

1 Introduction

Logiweb [8,9] is a system for authoring, storing, distributing, indexing, checking,
and rendering of “Logiweb pages”. Logiweb pages may contain mathematical
definitions, conjectures, lemmas, proofs, theories, journal papers, computer pro-
grams, and proof checkers.

The main features of Logiweb are that Logiweb offers authors unlimited no-
tational freedom, offers unlimited choice of what kind of logic authors may use,
allows authors to reference definitions and lemmas web-published by other au-
thors, and still is able to verify the formal correctness of papers.

From the point of view of an author, Logiweb resembles Mizar [19,16] and
TEX [12]: One prepares a source text mypaper.pyk with a text editor and runs
a command like pyk mypaper to get it checked, rendered, and published.

One difference from Mizar is that, on Logiweb, one has to see the result in
a web browser (even during the writing of papers where one typically does not
web-publish each iteration). Papers are typically rendered in PDF using TEX.
Another difference is that one may reference any Logiweb paper published on the
Internet. A third difference is that Logiweb has no central authority: anybody can
publish anything on the system as easily as one can publish pages on the World
Wide Web. A fourth difference is that Logiweb is more resource demanding than
Mizar and requires a modern PC to run smoothly.

Yet another difference from Mizar is that Mizar defines a syntax for source files
whereas Logiweb leaves the definition of that to the user. This allows authors to
write in a spoken math style like “limit as x tends to infinity of 1 over x” as in
EzMath [17]. Actually, the name “pyk” of the authoring tool was constructed by

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 250–264, 2007.
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removing “Vola” from “Volapyk” where “Vola” means “world” and “pyk” means
“speak”. Spoken mathematics like “limit as x tends to infinity of 1 over x” cer-
tainly does look like Volapyk to most people. Furthermore, the extension “.pyk”
was not used by anybody. The liberty to define the source language also allows
an author to choose e.g. Lim x -> infty : 1 / x for denoting a limit. The source
language of Logiweb has been used for proof checking at DIKU since 1985.

Having mentioned the differences with Mizar it should also be noted that
Mizar .miz and Logiweb .pyk files are not all that different, and the possibility
of a miz2pyk filter is being investigated.

1.1 Internet Problems

If one author proves Zorns lemma in ZFC and another proves Hahn-Banachs
theorem from Zorns lemma, then the correctness of the second proof depends on
the correctness of the former. If the proofs were published as papers on Logiweb,
then the paper proving Hahn-Banach would reference the one proving Zorn.
When Logiweb checks the Hahn-Banach paper, it fetches the Zorn paper from
the Internet and verifies that as well.

Now consider what happens if the author of the Zorn paper makes a slight
change of the formulation of Zorns lemma. In that case, the latter paper may
end up being incorrect.

Logiweb solves that using immutability. Immutability is normal in pure func-
tional programming: if one computes 2 : : 3 then one gets a pair whose head is 2
and whose tail is 3. After that, one cannot change the head and tail of the pair.
The pair remains immutable until it is garbage collected. If one wants a pair
whose tail is 4 one has to compute 2 : : 4 which gives rise to a new pair without
affecting the 2 : : 3 pair.

Logiweb pages are also immutable: once published, they cannot change. So
now the author of the Hahn-Banach paper can be sure that even if a new version
of the Zorn paper is produced, the Hahn-Banach paper will still reference the
old Zorn paper.

But there still is a problem, since the author of the Zorn paper may garbage
collect the old version. To counter for that, the author of the Hahn-Banach pa-
per may mirror the Zorn paper. The Hahn-Banach author does so by writing
pyk HahnBanach -mirror which makes the authoring tool resubmit all transi-
tively referenced papers. Resubmitted papers are stored on the computer of the
author, out of reach of other peoples garbage collectors.

The Logiweb software suite contains a demon named “logiweb” which must
run on all sites that publish Logiweb papers. All logiweb demons in the world
cooperate on indexing all Logiweb papers in the world, and no-one will notice
them as long as they do what they are supposed to do. The Logiweb demon is
the heart of the system. The pyk compiler is just one possible authoring tool (a
wysiwyg authoring tool has been made but is not currently maintained).

The Logiweb demons ensure that, as long as at least one copy of the old Zorn
paper remains accessible, no-one will notice that the author of the paper deleted
the original.
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1.2 Notational Problems

If the Zorn author for some reason uses x ⊕ y for the disjoint union of x and
y, and if the Hahn-Banach author wants to use x ) y instead, then the Hahn-
Banach author may define [x ) y =̈ x ⊕ y] which makes Logiweb macro expand
x ) y to x ⊕ y. This allows the Hahn-Banach author to write x ) y, but Logiweb
will macro expand each x ) y to x ⊕ y before proof checking.

If the Hahn-Banach author then wants to use x ⊕ y for some other operation,
then the Hahn-Banach author may define his own x⊕y and define it to his liking.
To Logiweb, each operator is identified by two natural numbers, a reference and
an index. The reference is a big number which identifies the home paper of the
operator (the paper which introduced the construct) and the index is a small
number which distinguishes operators introduced by the same paper. Logiweb
will not care about the two ⊕ operators having the same rendering. An author
may fool himself and others by mistaking the two operators, but to Logiweb the
two ⊕ operators are as different as any two other operators.

A malicious author could abuse notation to make readers think he has a
checked proof of some lemma, but the fraud would be detected the moment
somebody else try to use the lemma for further work.

1.3 Foundational Problems

Logiweb was constructed for supporting Map Theory (MT) [5,1] which is alien
to “normal” logic: MT builds on lambda calculus [2], has ZFC-power, unlimited
lambda abstraction, and equality, and it can e.g. well-order any set by recursive
use of Hilberts epsilon operator. But it does not have logical connectives; they
have to be defined. A large MT proof [7] has been formalized in Isabelle [18],
but existing systems are not very good at supporting MT.

Instead of making a taylor-made system for MT, Logiweb was constructed
such that it can support any theory equally well. Furthermore, Logiweb was
constructed with human readability in mind. As an example, the text book [6]
for teaching logic in computer science was written in a “Logiweb style” before
Logiweb itself was designed. That allowed to collect the requirements needed to
formalize a complete math book without sacrificing readability.

But the ability to support different kinds of logic raises new problems. Differ-
ent authors are likely to use different axiomatic systems, and a single paper may
use more than one axiomatic system. As an example, the present paper defines
both propositional calculus Prop and first order logic FOL. To avoid conflicts,
each lemma must state which axiomatic system it is relative to.

It may be non-trivial to use lemmas proved in one axiomatic system in proofs
that are relative to another system. Using Prop lemmas in FOL is easy since, as
we shall see, FOL builds on top of Prop. It is more cumbersome to prove ZFC
lemmas in MT even though every ZFC lemma is provable in MT. If one has
to use ZFC lemmas in MT, Logiweb offers two possibilities: The easy one is to
state as an axiom scheme that any proved ZFC lemma automatically becomes
an axiom of MT. The more cumbersome one is to define a proof tactic which,
given a ZFC proof, translates the proof to an MT proof.
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1.4 Rendering Problems

Logiweb renders pages using TEX and PDF. From August 11 to November 23,
2004, Logiweb also had support for MathML [15]. Support was removed, how-
ever, for several reasons: The automatically generated MathML could easily
bring the users browser to the knees, TEX had lots of facilities for bibliogra-
phies, indexes, and tables of contents, and the very purpose of MathML is not
particularly compatible with Logiweb. MathML provides a nice and easy way to
get mathematics on the web and it is easy to write and modify by hand. But
Logiweb has no need for a human friendly intermediate format here. Further-
more, PDF and TEX source can be fed directly from Logiweb into EasyChair or
even a publishing house. The latter was done in [9].

It should be noted that the rendering machinery of Logiweb is not tied
to TEX and PDF. TEX and PDF are only supported in the sense that TEX,
BibTEX, makeindex, and dvipdfm are external programs which Logiweb pro-
vides access to during rendering. All other rendering must be done by Logiwebs
own machinery. As an example, Logiweb also generates html, but that is done
internally.

So any user who wants Logiweb to render pages in MathML may define their
own “renderer” and publish it as a Logiweb paper. That would allow anybody
else to reference that renderer and themselves write papers which were rendered
in MathML.

The OMDoc format [13] is not supported either. But, again, one may add
support without opening the code of Logiweb itself. Like MathML, OMDoc
seems best suited for information in flux, i.e. information which the author may
change now and then without a need for keeping the old version. OMDoc is suited
as an output format for Logiweb, i.e. as a format in which papers are rendered.
But OMDoc invites inclusion of URLs inside documents. And one should avoid
relying on URLs in Logiweb papers since the immutability of Logiweb papers
prevents authors from repairing broken links.

Like OMDoc, Logiweb supports linear, tree-like, and DAG-like proofs. At
the inter-proof level, DAG-like structures are supported by the ability to use
lemmas in a non-circular manner. At the intra-proof level, DAG-like proofs are
supported by the ability to use arbitrary elements from the set of premises for
further reasoning. Tree-like proofs are supported by the cut sequent operation,
and linear proofs are supported by lists formed using the cut sequent operation
to bind lines together.

Contrary to OMDoc, Logiweb proofs are either formal (meaning they are
checked mechanically) or informal (meaning they are not checked). A partly
formal proof of a lemma L, however, may be represented defining a construct
P to denote the conjunction of the unproved statements used in the proof and
then stating and proving P � L instead of L. The proof of P � L can then be
checked formally, and L will be easy to prove if the proof obligation P is proved
later on on another Logiweb page.

http://www.easychair.org/
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One particular kind of rendering is rendering of executables. As an example,
one could define the Unix “ls” command in a Logiweb paper. Rendering of the
paper would then result in an executable named “ls” which does what Unix “ls”
is supposed to do provided the definition of “ls” in the paper is correct.

1.5 Availability

Logiweb is available from http://logiweb.eu/. First beta release (version 0.1.1)
was released on December 27, 2006. The current version is 0.1.5. Starting from
version 0.1.1 it is the intension to make all updates backward compatible. All of
Logiweb except its logo is available under the GNU public license.

At the time of writing, Logiweb runs at http://logiweb.eu, http://logiweb.
imm.dtu.dk, and http://topps.diku.dk/logiweb. The two first sites support a
Logiwiki each, allowing anyone to publish on Logiweb without installing local
software. All three sites provide a tutorial.

At the time of writing, the present paper is available at http://logiweb.eu/
grue/pages/Logiweb+layers/latest/. Note that a Logiweb paper has one and
only one Logiweb reference but may be available under many URLs. This may
happen if a paper is mirrored. Furthermore, the URLs of a paper may change
over time, but the Logiweb reference remains fixed.

The Logiweb reference of the present paper is BUpCgdix9lwGZKohkESIwWk
vdwwIhPa08-fhoigBB and is based on a RIPEMD-160 hash key [3]. It is the task
of the afore-mentioned Logiweb demons to keep track of the relationship between
Logiweb references and URLs. Logiweb demons listen at particular URLs such
as http://logiweb.eu/logiweb/server/relay/ called “relays”. To look up a paper
with a given Logiweb reference, append the URL of an arbitrary relay with the
string “64/” if the Logiweb reference is expressed base 64, the Logiweb reference
itself, and, optionally, a relative address such as “/2/body/tex/page.pdf” in case
one wants a rendering rather than raw bytes.

At the time of writing, both http://logiweb.eu/grue/pages/Logiweb+layers/
latest/ and h t tp : / / l o g iweb . eu/ l og iweb/ s e rv e r/ r e l ay/64/BUpCgd i
x 9 lwGZKohkES IwWkvdww IhPa 0 8 - f h o i gBB/2/ point to the “front
page” of the present version of the present paper. But the former may point to
some other version in the future while the latter will continue to point to the
present version as long as at least one copy of the present version remains on
Logiweb. The 2/ at the end of the latter reference means “two levels above the
raw bytes”, i.e. at address ../../ relative to the raw bytes of the page.

1.6 Overview

The following sections present the programming, metalogic, tactic, and proof
layers of Logiweb, respectively.

http://logiweb.eu/
http://logiweb.eu
http://logiweb.imm.dtu.dk
http://logiweb.imm.dtu.dk
http://topps.diku.dk/logiweb
http://logiweb.eu/grue/pages/Logiweb+layers/latest/
http://logiweb.eu/grue/pages/Logiweb+layers/latest/
http://logiweb.eu/logiweb/server/relay/
http://logiweb.eu/grue/pages/Logiweb+layers/latest/
http://logiweb.eu/grue/pages/Logiweb+layers/latest/
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2 Programming Layer

2.1 Combinations

As an example of the programming and rendering facilities of Logiweb, we define
the binomial coefficient (

n
k

)
=

n!
k !(n − k)!

A recursive definition reads:

[
(

n
k

)
=̇ if k = 0 then 1 else

(
n − 1
k − 1

)
· n div k ]

As an example, we have [
(

4
2

)
= 6]·.

2.2 Syntax

The source text of Section 2.1 reads:

\subsection{Combinations}\label{sec:Combinations}

As an example of the programming and
rendering facilities of Logiweb, we
define the binomial coefficient

"[[[ (( n , k )) = (( n factorial /
k factorial,( n - k ) factorial )) ]]]"

\noindent A recursive definition reads:

"[[[ value define (( n , k )) as
if k = 0 then 1 else (( n - 1 , k - 1 ))
* n div k end define ]]]"

\noindent As an example, we have
"[[ ttst (( 4 , 2 )) = 6 end test ]]".

Section 2.1 contains an informal formula ((n, k)) = . . . , a value definition
(value define . . .), and a test case (ttst . . .). The formulas are mixed with TEX
source with formulas delimited by "[...]" (double and triple brackets are like
single brackets but also change to TEX math and display math mode, respec-
tively).

The value definition is what actually defines the binomial coefficient to Logi-
web. Logiweb uses that definition when verifying the test case. Logiweb sim-
ply ignores the informal formula. The test case in Section 2.1 reveals to
thorough readers that it is formally checked by an almost invisible dot
superscript.
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2.3 Aspects

The present paper has an electronic appendix [10] which contains the following:

"[[ tex define (( n , k )) as "
\left( \begin{array}{l} "[ n ]"
\\ "[ k ]"
\end{array}\right)" end define ]]"

That defines how to render the binomial coefficient. Logiweb uses named pa-
rameters "[ n ]" and "[ k ]" where TEX uses positional parameters #1 and
#2.

The two definitions of the binomial coefficient stated so far define the value and
tex aspects of the coefficient, respectively. Logiweb allows to assign an arbitrary
number of aspects to any construct and allows users to invent new aspects.

2.4 Headers

The source text of the present paper starts thus:

PAGE Logiweb layers

BIBLIOGRAPHY
"check" "http:check/latest/vector/page.lgw",
"base" "http:base/latest/vector/page.lgw"

PREASSOCIATIVE
"check" check
"base" base
"" (( " , " ))
"" (( " / " ))

PREASSOCIATIVE
"base" +"

The first line gives the page a local name. The next three lines reference two pre-
viously published Logiweb pages (the references given are relative to a “current
directory”, one may also give full URLs or Logiweb references). The bibliogra-
phy provides access to all constructs defined on the two mentioned pages plus
all their transitively referenced pages.

The next five lines import the “check” construct from the check page, the
“base” construct from the base page, and defines two new constructs named
((∗, ∗)) and ((∗/∗)). The new constructs become constructs of the Logiweb layers
page. Lines that begin with the empty string "" introduce new constructs. Lines
beginning with a page name import a construct from that page. Inside defined
and imported constructs, the double quote " servers as a parameter placeholder.

http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
http://logiweb.eu/logiweb/server/relay/64/B4Phz5ir87TeANjHuK6rAJnyC_ehQX7nPiu_nigBB/2/
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The next two lines import a “gluing” prefix plus. It is gluing in the sense
that no space is allowed between the plus sign and its argument. A gluing plus
is used for expressing numerals like +117. Importing the gluing plus implicitly
imports all constructs with the same priority as the gluing plus, which happens
to include a gluing minus. For that reason, one may write −117 even though there
is no explicit mention of a gluing minus in the header (for completeness: the base
page also defines a unary minus −117 which changes the sign of its argument;
the gluing minus only works with numerals and is handled at macro expansion
time whereas the unary minus can be applied to anything and is handled at run
time).

Constructs mentioned in pre- and postassociativity sections are left and right
associative, respectively, when used in text written left to right. Constructs in
early associativity sections have higher priority than those in later sections. Con-
structs in the same associativity section have the same priority. As an example,

PREASSOCIATIVE
"check" all " : "
POSTASSOCIATIVE
"check" " imply "

makes y = 0 imply all x : x >= 0 imply all x : x >= y have the follow-
ing tacit parentheses:

y = 0 ⇒ ((∀x : x ≥ 0) ⇒ (∀x : x ≥ y))

The input syntax is up to the user. As an example, the present author likes to
write imply rather than => for implication, but other authors may have other
preferences. Logiweb supports Unicode, so one may even use a ⇒-character for
implication.

3 Metalogic Layer

3.1 Sequent Calculus

A proof checker is no more than a big, recursive function when expressed in
Logiwebs programming language. The check page referenced by the present pa-
per defines one, particular proof checker which we shall refer to as the Logiweb
sequent checker. All Logiweb pages which reference the check page as their first
reference and which do not define their own proof checker are checked by the
sequent checker.

Any user can define their own proof checker, but the sequent checker is gen-
eral enough that there should be no need for doing so. The sequent checker
implements a variant of sequent calculus [4,11]. The calculus allows to formulate
axiomatic theories, lemmas, and proofs.

3.2 Terms

The following axioms of FOL [14] illustrate what a term of the Logiweb sequent
calculus may look like:

http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
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Axiom A1: Πx, y: x ⇒ y ⇒ x �

Axiom A2: Πx, y, z: (x ⇒ y ⇒ z) ⇒ (x ⇒ y) ⇒ x ⇒ z �

Axiom A3: Πx, y: (¬y ⇒ ¬x) ⇒ (¬y ⇒ x) ⇒ y �

Axiom A4: Πt, x, a, b: sub ( b , a , x , t ) �� ∀x: a ⇒ b �

Axiom A5: Πx, a, b: x avoid a �� ∀x: (a ⇒ b) ⇒ a ⇒ ∀x: b �

Rule MP: Πx, y: x ⇒ y � x � y �

Rule Gen: Πu, x: x � ∀u: x �

Theory Prop: MP⊕A1⊕A2 ⊕A3 �

Theory FOL: Prop⊕Gen⊕A4⊕A5 �

Terms of the Logiweb sequent calculus are built up from Πx: y (y is provable
for all terms x), x � y (y is provable if x is provable), x �� y (y is provable if x
evaluates to T), and x⊕ y (both x and y are provable).

Constructs like x ⇒ y and ¬x live at the object level and do not mean
anything to the Logiweb sequent calculus. The construct x avoid y is defined
such that it evaluates to T (truth) if x is an object variable not free in y and
sub ( b , a , x , t ) is T if b is alpha-equivalent to a where x is replaced by t
(see the check page for details).

A statement like

Axiom A1: Πx, y: x ⇒ y ⇒ x �

defines the “statement” aspect of A1 to be Πx, y: x ⇒ y ⇒ x. The Logiweb
sequent calculus does not distinguish between axioms, rules, and theories, so all
of the declarations leading up to the declaration of FOL above just macro expand
to statement definitions. Even lemmas translate into statement definitions. What
distinguishes lemmas from other statements is that they also have a “proof”
aspect which proves the lemma. Axioms, rules, and theories are statements that
do not have proofs.

3.3 Sequents

A Logiweb sequent is a triple 〈p, s , c〉 where c is a sequent term and p and s are
sets of sequent terms. We shall refer to c as the conclusion, to elements of p as
premises, and to elements of s as side conditions. A Logiweb sequent represents
the statement that if all elements of p are true and all elements of s evaluate to
T then c is true.

http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
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3.4 Sequent Operations

Logiweb sequent calculus has thirteen sequent operations:

aI → 〈{a}, ∅, a〉 Init
a � 〈p, s , c〉 → 〈p \ {a}, s , a � c〉 Infer
a �� 〈p, s , c〉 → 〈p, s \ {a}, a �� c〉 Endorse
Πx : 〈p, s , c〉 → 〈p, s , Πx : c〉1 Generalize
〈p, s , a � c〉� → 〈p ∪ {a}, s , c〉 Ponens
〈p, s , a �� c〉�� → 〈p, s ∪ {a}, c〉 Probans
〈p, s , Πx : c〉 @ a → 〈p, s , 〈c|x := a〉〉2 Instantiate
〈p, s , a �� c〉∗ → 〈p, s , c〉3 Verify
〈p, s , a � b � c〉U → 〈p, s , (a ⊕ b) � c〉 Uncurry
〈p, s , (a ⊕ b) � c〉C → 〈p, s , a � b � c〉 Curry
〈p, s , c〉 ie n → 〈p, s ,n〉4 Reference
〈p, s ,n〉D → 〈p, s , c〉4 Dereference
〈p, s , c〉; 〈p′, s ′, c′〉 → 〈(p′ \ {c}) ∪ p, s ∪ s ′, c′〉 Cut

As an example, A1 � A1ID @ x = 0 @ y = 0 sequent evaluates as follows:

A1 � A1ID @ x = 0 @ y = 0 →
A1 � 〈{A1}, ∅, A1〉D @ x = 0 @ y = 0 →
A1 � 〈{A1}, ∅, Πx, y: x ⇒ y ⇒ x〉 @ x = 0 @ y = 0 →
A1 � 〈{A1}, ∅, Πy: x = 0 ⇒ y ⇒ x = 0〉 @ y = 0 →
A1 � 〈{A1}, ∅, Πy: x = 0 ⇒ y = 0 ⇒ x = 0〉 →
〈∅, ∅, A1 � x = 0 ⇒ y = 0 ⇒ x = 0〉

The resulting sequent has no premises, no side conditions, and conclusion A1 �
x = 0 ⇒ y = 0 ⇒ x = 0. For that reason, A1 � A1ID @ x = 0 @ y = 0 is said to
prove A1 � x = 0 ⇒ y = 0 ⇒ x = 0.

Statements that can be proved in the Logiweb sequent calculus are intuition-
istically valid. As an example, if ZFC is Zermelo-Fraenkel set theory with the
Axiom of Choice and Zorn is Zorns lemma, then ZFC � Zorn is the intuitionis-
tically valid statement that Zorn follows from ZFC. With suitable definitions of
ZFC and Zorn, that statement would be provable in the sequent calculus.

4 Tactic Layer

4.1 Proof Construction

It is difficult to express proofs directly in the Logiweb sequent calculus. For that
reason, the proof checker defined on the check page defines a number of macros
and “tactics” which perform some of the trivial work in constructing proofs.
1 If x is not free in any element of p or s.
2 If a is free for x in c.
3 If a evaluates to T.
4 If the statement aspect of n is c.

http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
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A Logiweb page has a “body” which is the parse tree of the source text.
Logiweb pages are rendered on basis of the body using tex definitions.

In many situations it is convenient to use shorthand notation. Logiweb sup-
ports that by having a macro expansion facility. Among other, the macro ex-
pansion facility is responsible for translating axiom declarations into statement
definitions. Evaluation of test cases and proof checking is done after macro ex-
pansion.

As a further convenience, proofs are “tactic” expanded before they are checked.
In principle, tactic expansion is much like macro expansion. But tactic expansion
is only applied to proofs, not to test cases. Furthermore, the sequent proof that
results from tactic expansion is discarded as soon as it is verified whereas the out-
come of macro expansion is kept in the memory of the proof checker. Hence, when
the Logiweb proof checker verified the present paper it had access to the macro
expanded version of the check page but not to the tactic expanded version. Fur-
thermore, the tactic expanded version of each proof is discarded before the proof
checker goes on to the next proof.

4.2 Definitions of Tactics

A tactic is defined by defining the “tactic” aspect of a construct, and the tactic
is used by including that construct in a proof. When the proof checker verifies a
proof, it invokes the tactics and then sequent evaluates the outcome.

When the proof checker invokes a tactic, it applies the tactic to a “cache”.
Each page has a “cache” which is a functional array of information. Among
other, the cache contains all definitions on the page itself and on all transitively
referenced pages. Hence, the tactics have access to all definitions. Since lemmas
and proofs macro expand into definitions, one would be able to write a tactic
which searches all transitively referenced pages for suitable lemmas. The tactics
defined on the check page are more modest, however.

The cache also contains a lot of other information such as the compiled ver-
sions of all value definitions, the bodies and macro expanded versions of all
transitively referenced pages, and “diagnoses” of all referenced pages. Logiweb
allows users to publish incorrect pages. And it may even make sense to reference
incorrect pages. But incorrect pages are easy to distinguish from other pages in
that they have a non-empty diagnose. That diagnose, when rendered, is supposed
to tell what is wrong with the given page.

4.3 Tactic Levels

The system of tactics defined on the check page defines three levels of tactics:
A top level tactic which expands entire proofs, medium level tactics which take
care of proof constructors, and low level tactics which take care of individual
lemmas and rules.

The top level tactic is an evaluator which invokes all the medium level tactics
in a proof. The top level tactic is installed in the root of each proof during macro
expansion.

http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
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Most of the medium level tactics collect information and pass it on. As an
example, the sequent operator x � y has an associated tactic which ensures that
tactics inside y are aware that they can assume that x holds.

The check page also defines a somewhat more complex “unification” tactic
x , y which is a medium level tactic. The unification tactic takes two arguments
x and y where x is an incomplete proof and y is the desired conclusion. The
unification tactic tries to adapt x such that x proves y. It mainly does so by
adding instantiation operators u @ v where it guesses v using unification.

Low level tactics may occur inside the x argument of x , y. Among other,
there is a low level tactic for proving axioms like A1. From a human point of view,
axioms are assumed rather than proved. But in the sequent calculus, axioms do
have to be proved, and the proof depends on context. As an example, if the
proof is relative to Prop then the tactic expansion of A1 reads Prop � · · · and
A1 is proved by dereferencing Prop into MP⊕A1 ⊕A2 ⊕A3 and then picking
the second element using suitable sequent operations. If the proof is relative to
FOL then a proof of A1 is slightly different.

5 Proof Layer

5.1 A Lemma and a Proof

As a simple example, consider the following lemma and proof:

Prop lemma Taut: Πx: x ⇒ x �

Prop proof of Taut:
L01: Arbitrary , x ;
L02: A2 , (x ⇒ (y ⇒ x) ⇒ x) ⇒

(x ⇒ y ⇒ x) ⇒ x ⇒ x ;
L03: A1 , x ⇒ (y ⇒ x) ⇒ x ;
L04: MP � L02 � L03 , (x ⇒ y ⇒ x) ⇒ x ⇒ x ;
L05: A1 , x ⇒ y ⇒ x ;
L06: MP � L04 � L05 , x ⇒ x �

The first line above (the one before line L01) defines the proof aspect of Taut to
be Prop � · · ·. Effectively that makes all axioms and inference rules of proposi-
tional calculus available.

Line L01 translate into Πx: · · ·. That produces the Π in the lemma.
Line L02 macro expands into a local macro definition which defines L02 as

shorthand for (x ⇒ (y ⇒ x) ⇒ x) ⇒ (x ⇒ y ⇒ x) ⇒ x ⇒ x in the lines following
Line L02. That is utilized in Line L04. Furthermore, Line L02 macro expands
into a cut operation whose left argument is A2 , (x ⇒ (y ⇒ x) ⇒ x) ⇒ (x ⇒
y ⇒ x) ⇒ x ⇒ x and whose right argument is the rest of the proof.

Later on, A2 is tactic expanded to a proof P of A2 by a low level tactic, and
the unification tactic massages P , (x ⇒ (y ⇒ x) ⇒ x) ⇒ (x ⇒ y ⇒ x) ⇒ x ⇒ x
into P @ x @ y ⇒ x @ x.

After macro and tactic expansion, the proof has the form of a rather unread-
able sequent proof which is verified and then discarded.

http://logiweb.eu/logiweb/server/relay/64/Bw_G8oX1V6b9OUrcWoNNRsw4NPWWwnI4Lju_nigBB/2/
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5.2 Source

The source of Section 5.1 starts thus:

As a simple example, consider the following lemma and proof:

"[ Prop lemma Taut : All #x : #x imply #x end lemma ]"

"[ Prop proof of Taut :

line L01 : Arbitrary >> #x ;

line L02 : A2 >>
( #x imply ( #y imply #x ) imply #x ) imply newline
( #x imply #y imply #x ) imply #x imply #x ;

line L03 : A1 >> #x imply ( #y imply #x ) imply #x ;

line L04 : MP ponens L02 ponens L03 >>
( #x imply #y imply #x ) imply #x imply #x ;

line L05 : A1 >> #x imply #y imply #x ;

line L06 : MP ponens L04 ponens L05 >> #x imply #x qed ]"

In the source, the present author has chosen to use #x and #y for meta variables
and to use All for the meta quantifier as opposed to all for an object quantifier.
The newline in Line L02 tells TEX that the given place is a good place for
breaking the line. The blank line between lemma and proof is important to TEX
as it puts TEX in vertical mode before the proof. The blank lines inside the pyk
source of the proof are merely aesthetic.

5.3 Further Examples

As a simple example of a macro, one may define

[x � y =̈ MP � x � y]

and then replace e.g. MP�L02�L03 by L02�L03 in line L04 of the proof above.
This illustrates the simplest kind of macro definition available in Logiweb. The
general macro facility is Turing complete.

Further proofs may be found at http://logiweb.eu/.
One topic which has not been touched upon is the handling of the deduction

theorem. Deduction can be handled by macro expansion or tactic expansion or
by including the deduction rule as an inference rule of FOL. At the time of
writing, deduction is treated as an inference rule, but a solution using tactics is
being implemented.

http://logiweb.eu/
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6 Conclusion and Further Work

The macro, tactic, and rendering facilities of Logiweb together with the Logi-
web sequent calculus and the proof checker makes it easy to define axiomatic
theories and state lemmas and proofs in a readable style close to that of e.g.
[14]. The rendering and programming facilities also make it easy to define and
render constructs like the binomial coefficient in a style close to that of ordinary
mathematics. The present paper only presents very few examples, and it is left
to the reader to extrapolate. Larger proofs may be found at logiweb.eu. The
reader may construct proofs more complex the that given here in less than half
an hour by following the tutorial at logiweb.eu.

A particularly important problem not covered here is the handling of deduc-
tion. Deduction is currently being ported from being an inference rule to being
a tactic. Proofs that use a deduction inference rule may be found at logiweb.eu
and in [9]. Deduction is different in FOL and MT, so it has to be implemented
twice. Furthermore, it is planned to investigate the possibility of translating
Mizar .miz files to Logiweb .pyk files, and to verify [7] and [6] using Logiweb.
Finally, it is the intension to continue doing bug fixes and backward compatible
enhancements of the Logiweb system.
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Abstract. We have formalized material from an introductory real analysis text-
book in the proof assistant Scunak. Scunak is a system based on set theory en-
coded in a dependent type theory. We use the formalized material to illustrate
some interesting aspects of the relationship between informal presentations of
mathematics and their formal representation. We focus especially on a represen-
tative example proved using the system.

1 Introduction

In recent decades, a large amount of mathematics has been formalized in different log-
ical systems using various computer programs. Still, the mathematics that has been
formally represented and verified using computers is a tiny percent of the mathemat-
ics that has been informally written and published as books and papers. If this infor-
mally presented mathematical knowledge is to be transformed into formal versions in
mechanized systems, then we must better understand the relationships between the two
versions. In order to study the gap between informal and formal representations, we
have formalized some material from Bartle and Sherbert’s introductory textbook on
real analysis [2]. This particular textbook has been studied in the context of formal-
ized mathematics already. In particular, a linguistic analysis of portions of [2] is given
in [3]. Likewise, an example from the first chapter of [2] is considered in [1] and [8].
We formalized the material in Scunak [5,6], a system based on set theory encoded into
a dependent type theory.

In the next section, we will introduce the type theory of Scunak. In Section 3, we
discuss the formalization of material from the textbook [2]. In Section 4, we focus on
one small example from [2] (the limit of the sequence 1√

n
is 0). We have encoded

this example in ISABELLE-HOL [12] and MIZAR [14], and we briefly compare the
encodings.

2 Preliminaries

We present the mathematical proof assistant Scunak [5,6]. Scunak is based on set theory
formalized in a logical framework with dependent types and proof terms. The system is
relatively new and has been under development since 2005.

Scunak offers several functionalities to its users.
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– It provides an environment in which one can formalize mathematics from a set-
theoretical foundation.

– Like several other proof assistants such as Coq [4], Scunak allows its users to inter-
actively construct proofs (technically “proof terms”) using the Scunak Interactive
Prover (Scip).

– Scunak can be used as a tutor (Scutor, for a demonstration see [7]) that gives feed-
back to a user on his proof attempts in an arbitrary state of the proof.

– Scunak can be used for verifying textbook proofs through a process of translating
the LATEX representation of informal proofs into a proof term that can be understood
and checked by Scunak. A detailed description of the process is given in [8].

In this paper, we focus on the relationship between informal mathematical texts and
the formal versions in Scunak. Functionalities of Scunak like Scutor and Scunak’s ver-
ification component for textbook proofs are beyond the scope of this paper.

2.1 The Scunak Type Theory

The type theory of Scunak is dependent type theory with proof irrelevance. A general
frame in which proof irrelevance is discussed can be found in [13]. We briefly give the
syntax for the type theory of Scunak.

We assume a countably infinite set of variables and use x to range over this set. In
addition to variables, we also assume a countably infinite set of names and use c to
range over this set. Names will be used to declare constants, abbreviations and claims
in a signature.

The set of terms and types are given inductively as follows:

Terms p, r, s, t, φ, ρ . . . := x|c|(λx.s)|(s t)|〈s, ρ〉|π1(t)|π2(t)
Types S, T, S1, T1 . . . := obj|prop|(pf p)|(classφ)|(Πx : S. T )

We often omit parenthesis if it is clear in context where they are missing. A context
Γ is an ordered list of variables associated with types. We sometimes speak of a term t
having a type T (in a context Γ ), and we write t : T (or Γ � t : T ). For the definitions
of these notions see [5,9].

Often, we will be discussing a particular object of mathematical discourse such as a
set A or a sequence X . During such a discussion we may use a corresponding term A
and X. In each such case, the implicit assumption is that the term (e.g., A) corresponds
to the object of discourse (e.g., A).

We describe the types of Scunak below.

– obj is the type of all mathematical objects. In set theory it is very common to
consider any mathematical object as a set. Scunak reflects this idea by having a
synonym set for the basic type obj.

– prop is the type of all propositions.
– Proof types: pf p is the type of (all) proofs of the proposition p. Note that pf p

is empty if p is unprovable. Proof types are a form of dependent types since they
depend on propositions.



Formal Representation of Mathematics in a Dependently Typed Set Theory 267

– Class types: These are types that correspond to the class {x|φ(x)} where φ(x) is
a proposition depending on a mathematical object x. Such types are called class
types and they depend on predicates φ. An inhabitant of a class type classφ is a
pair term 〈s, ρ〉, where φ : obj → prop is a predicate, s : obj is a mathematical
object and ρ : pf (φ s) is the proof of the proposition (φ s). Note that without proof
irrelevance, there could be more than one proof of (φ s), and hence more than one
representative of type pf (φ s).

– Π-types: The remaining types in Scunak are the dependent Π-types, which are
generalizations of simple function types. We write S → T for Πx : S. T if x does
not occur in the output type T .

One represents a formal mathematical theory in Scunak by giving a signature Σ
which is a list of constants, abbreviations and claims. We describe each of these below.

– A constant is specified by a name c and a type S. A constant corresponds to a basic
constructor or axiom of the theory.

– An abbreviation is specified by a name c, a type S and a term t. An abbreviation
corresponds to a defined constructor or a proved theorem.

– A claim is specified by a name c and a type S. A claim corresponds to a constructor
we intend to define, or a proposition we intend to prove. In essence, claims are
constants which should become abbreviations in a later version of a signature.

Scunak uses type checking to ensure signatures are declared in a valid manner.

2.2 Mac Lane Set Theory in Scunak

The current version of Scunak provides a variety of set theories, including a theory of
hereditarily finite sets (see [6]), forms of Mac Lane set theory (see [5]) and a form of
Zermelo-Fraenkel set theory with axiom of choice (ZFC, see [9]). Each set theory is
given as a signature in the type theory which can be loaded as a “kernel.” The user can
choose the appropriate set theory by loading the corresponding kernel.

We have worked in a set theory that is a form of Mac Lane set theory with uni-
verses, the axiom of choice and foundation (MACU). One of the first set theories
implemented in Scunak was Mac Lane set theory with universes, but without choice or
foundation (MU). The signature corresponding to MU is given in [5]. Aside from the
fact that MACU includes choice and foundation (adding two constants), the formu-
lation of universes in the two theories are different (removing two constants). Both the
signature for MU and MACU consist of 29 constants. A description of Mac Lane set
theory can be found in [11].

We briefly mention the constants used to construct propositions and set theoretical
concepts.

There are three constants in the signature for propositions. There is a constant for the
logical connective ¬, which is the only logical connective represented by a constant.
There are two constants for the basic relations = and ∈ in set theory.

Six constants are defined in the signature for constructors corresponding to the fol-
lowing axioms of MACU.
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– Axiom of empty set: There is a set ∅ containing no elements.
– Axiom of separation: Given any set A and any property φ, there is a set of elements

x of A (a subset of A) for which φ(x) holds.
– Axiom of power set: For any set A, there is a set P(A) (the power set of A) such

that the elements of P(A) are exactly the subsets of A.
– Axiom of union: For any set A, there is a set

⋃
A such that if x ∈

⋃
A, then there

is an element y ∈ A such that x ∈ y.
– Set adjoin: For two sets A and B, {A} ∪B is a set.
– Universes: For any set A, there is a set Univ(A) which contains A, is transitive,

and is closed under power set. (Note that Univ(∅) must be an infinite set.)

The remaining constants correspond to deduction rules for the basic set theory [5],
as well as choice and foundation.

The other logical connectives and set theoretical notions are given as abbreviations
from the constants mentioned above (see [6] for a presentation of the derivations).

2.3 A Modular Treatment of the Real Numbers

If one is formalizing mathematics within a foundational framework, then one must face
the question of how to treat the real numbers. Fundamentally, the question is whether
the real numbers should be constructed or axiomatized. In Scunak, we want all our
mathematical content to be reduced to the basic foundational axioms. To obtain this
goal, we could construct a signature with three sections:

1. Set Theory Intro: Axioms of set theory and basic set theoretic constructions
2. Constructing the Reals: A construction of the reals
3. Real Analysis Intro: Results from real analysis

Such a signature would guarantee that all our results can be traced back to the original
axioms of set theory.

Our primary goal, however, was to follow the textbook [2], we note carefully how
the authors introduce the reals in the first paragraph of Chapter 2 of [2]:

In this chapter we shall discuss the essential properties of the real number system
R. Although it is possible to give a formal construction of this system on the basis
of a more primitive set (such as the set N of natural numbers or the set Q of rational
numbers), we have chosen not to do so. Instead, we exhibit a list of fundamental
properties associated with the real numbers and show how further properties can
be deduced from them.

Bartle and Sherbert are quite explicit that they are not constructing a set of reals. How-
ever, they also refer to “the” real number system R, indicating that they have a real
number system R already. How should this be reflected in the formalized version?

We decided to construct a signature of the following form:

1. Set Theory Intro: Axioms of set theory and basic set theoretic constructions
2. Claiming the Reals: Claims corresponding to the real number system
3. Real Analysis Intro: Results from real analysis
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The claims in the second section would behave like basic constants and axioms, but
could be later given definitions. The idea was that using claims would force the real
analysis section to be independent of the construction of the reals (as in the textbook).
This approach enforces a level of modularity between sections. The second section
could be replaced by different constructions of the reals so long as the types of the
claims corresponding the the real number system are the same.

In addition to the independence of the real analysis section on the construction of the
reals, we found that the real analysis section was largely independent of the underlying
set theory as well. In particular, while we choose to use MACU as the underlying
set theory, after encoding the mathematical content it became clear that the axioms of
choice and foundation were never used.1 In fact, since we are working with a claimed set
of reals, we do not even need an axiom of universes (or any axiom of infinity). Without
difficulty, one can change the underlying set theory to be MU, MACU, ZFC or even
a theory of hereditarily finite sets. Note that if the underlying set theory is a theory of
hereditarily finite sets, then there is no hope of constructing the real numbers; they must
remain open claims in this case.

3 How Does the Scunak Type Theory Reflect Informal
Mathematics?

Informal presentations of mathematical knowledge in textbooks are untyped, but their
formal versions in most mechanized systems for mathematics correspond to typed rep-
resentations. We illustrate how the informal presentation of mathematics we have taken
from [2] is reflected formally in Scunak by identifying several properties we observe in
the formal version as consequences of the Scunak type theory.

3.1 Syntax

We briefly mention the concrete syntax employed for the examples we present in this
paper. The conrete syntax used for terms and types is PAM (Pseudo-Automath) syn-
tax [6]. The PAM syntax provides human-readable forms of notation to denote several
mathematical operators using a combination of infix notation and special binder nota-
tion. We will use the typewriter font to present material formalized in PAM syntax.

The symbol :: is an infix notation for the constant in that represents the membership
relation ∈ of sets.

The PAM syntax for the λ-binder is \. For convenience we also include some special
forms for binders encoded as constants or abbreviations. The PAM syntax for the proof
type pf p is |- p.

Given a set A and a property φ, we have the constant

dsetconstr : ΠA : obj. Πφ : (class (inA) → prop).obj

corresponding to the Axiom of Separation. Given a set A and a proposition P (x) which
depends on an element x of A, the term (dsetconstrA (λx .P)) corresponds to the

1 We should note, however, that some lemmas were left as open claims. It is possible, though
unlikely, that some of these lemmas might require choice or foundation.
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subset {x ∈ A|P (x)} of A. One can write this as (dsetconstr A (\x.P)) in PAM
syntax. PAM syntax also includes the syntactic sugar {x:A|P} for such a term.

Quantifiers are handled in a similar way. The quantifiers derived in the kernel of
MACU are bounded quantifiers. That is, they are bounded to certain domains (sets)
and have the form ∀x ∈ A. P (x), ∃x ∈ A. P (x) for a set A and a property P (x)
depending on an element x in A. The abbreviations corresponding to the bounded uni-
versal and the existential quantifiers have the names dall and dex and have the type
ΠA : obj. (class (inA) → prop).prop.

In PAM syntax, one can write (forall x:A . P) and (exists x:A . P) as
syntactic sugar for (dallA (λx.P)) and (dexA (λx.P)) for a term P with type prop.

After claiming the set of reals and defining the ordering relation on the reals, the
symbol > is given as infix notation for the formal version of the ‘greater than’ operator.

In order to aid readability, we will sometimes mix notations in the discussion below.
Also, we sometimes mention a “type” and give PAM syntax, by which we mean the
type specified by the given PAM syntax.

We add variables to a context by giving the variable name, a colon, and a PAM spec-
ification of the type, all surrounded by brackets. For example, if we want to introduce a
set A into the context, we actually introduce a variable A of type set into the context
using the PAM syntax [A:set].

3.2 Sets as Types

In the Scunak type theory, the notion of set is represented by the basic type set, which
is a synonym for the basic type obj of all mathematical objects.

When we formalize mathematics in Scunak we quite often use sets as types of certain
terms, in particular, when we work with elements of sets. For example, consider a set A
and an element x of A. We can represent these objects in Scunak by declaring variables
A and x to have certain types in a context. We declare this in PAM syntax as follows:
[A:set][x:A].

The type of x is class (inA). Intuitively, this corresponds to the fact that x belongs
to the class of objects that are in the set A. The class type class (inA) is often written
as A in PAM syntax leaving out class and in. This allows any set to be used as the
“type” of its elements.

Note that the above representation of x ∈ A uses dependent types. The type of
x depends on the variable A. This representation is quite compact compared to the
representations of simple type systems, since the information x ∈ A is contained in the
type of x. In simply typed systems one is required to either assume A is the simple type
of x or add the information (x ∈ A) into the formalizations usually as the antecedent of
an implication ((x ∈ A) ⇒. . . ). This means, one carries x ∈ A as an extra information
in the formalizations.

We now discuss some examples that demonstrate the use of sets as types in the
material we have formalized in Scunak.

Fig. 1 shows the definition of the notion of a lower bound of a set of real numbers
taken from [2] and its corresponding formal representation in Scunak in PAM syntax.

A real number w is represented as an object that is in the set R of real numbers as
[w:R], where R denotes the set of real numbers we have claimed in Scunak.
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A subset S of R is represented as an object that is an element of the power set of R, in
PAM syntax as [S:(powerset R)]. Here powerset is the PAM version of the con-
stant named powerset with type obj → obj in the kernel of Scunak corresponding
to the axiom of power set.

realLowerBoundOf and realLeq are the formal versions of a lower bound of a
set and the relation ≤. They inhabit the types (powerset R) -> R -> prop and
R -> R -> prop, respectively.

Note that the bound variable s in (forall s:S . (realLeq w s)) has the type
S, whereas realLeq expects two arguments of type R. Scunak uses a special type con-
version mechanism to type-check the application of realLeq w to s. We discuss the
mechanism in Section 3.3.

Type Refinement using the Axiom of Separation. As we mentioned earlier, the Ax-
iom of Separation is encoded in Scunak. Here we show how one can use the encoding
to give refined types. Given a set A and a property φ, we can form the set {x ∈ A|φ(x)}
and use this as a refined version of the type corresponding to A.
A : set
φ : (class (inA)) → prop
x : class (in {x ∈ A|(φx)})

This style of type refinement corresponds to linguistic specifications in informal
mathematical texts. For example, “a lower bound w” as stated in Fig. 2 taken from
the definition of an infimum of a set of real numbers in [2] is a linguistic specification
of a real number that has the property of being a lower bound of a set S of real num-
bers. The formal version in Fig. 2, uses separation to reflect the informal specification
by refining the type R of real numbers with the relation realLowerBoundOf. The re-
sulting type {x:R|(realLowerBoundOf S x)} is the type a variable representing a
real number w that is a lower bound of a set S of real numbers.

In MIZAR, there is an alternative type refinement mechanism that uses MIZAR “at-
tributes” (see [15]) to represent such linguistic specifications in textbooks.

In ISABELLE-HOL, one can employ a type definition mechanism rather than type
refinements for the presentation of these specifications. For example, a simple type α
and a closed, nonempty predicate φ on α can be used to define the type, say γ, of terms
for which the property φ holds. Along with the definition, there is usually a function
that serves the purpose of an explicit type conversion between α and γ.

Type refinement using the Axiom of Separation does not require a function for the
explicit conversion of type class (in {x ∈ A| (φx)}) to type class (inA). The con-
version is performed implicitly by means of certain inference rules in the kernel of

Definition. Let S be a subset of R. A number w ∈ R is said to be a lower bound of S if w ≤ s
for all s ∈ S.

[S:(powerset R)]
[w:R]
(realLowerBoundOf S w):prop=(forall s:S . (realLeq w s)).

Fig. 1. An Example of Using Sets as Types
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Scunak. By means of this implicit type conversion, the application of the infix operator
>, which expects two arguments of type R, to the terms w and v, which have the refined
type {x:R|(realLowerBoundOf S x)}, type-checks.

3.3 Type Conversions

From everyday programming languages like C/C++, we are familiar with the notion of
implicit type conversions, also known as coercions, used for converting numeric types
(like the type int of integers and float of floating numbers). The general idea of type
conversions is that a variable of a certain type is forced to behave as if it has another
type. This means, if a type S is coerced to another type T , then any term that expects a
member of T can accept an argument that is a member of S.

Scunak does not have numeric types. Numbers are members of class types. For in-
stance, N and R are PAM notation for the sets N of natural numbers and R of real
numbers, respectively. Hence N and R can be used as the types of natural numbers and
real numbers. This means, there are distinct types for numbers in Scunak. Nevertheless,
one can naturally expect a natural number to behave as a real number (since N ⊆ R and
thus a natural number is a real number). In other words, one technically expects a term
with type N to behave as if it has type R. Scunak has a type conversion mechanism for
subsets of sets (like N of R). We describe the mechanism below.

Suppose there are two sets A and B with the property B ⊆ A. Given two corre-
sponding terms A and B, the type class (inB) can be converted to type class (inA)
if there is a proof of the property B ⊆ A (i.e, if there is a term ρ with type pf (B ⊆ A)).
The conversion requires an explicit statement in the presence of a proof of B ⊆ A in
the formalizations. The statement needs to be declared only once. Then, in any future
formalization, any term that expects arguments corresponding to elements of A can be
applied to terms corresponding to elements of B without violating type checking. One
should note that the type conversion do not affect the resulting type of an application.

Arithmetical operators such as addition, subtraction, multiplication are given for real
numbers and their application to elements of subsets of R (like naturals, integers, ra-
tionals, etc.) is handled through converting the types of elements of subsets of R to the
type of real numbers. The definitions of arithmetical operators are not overloaded for
each distinct type of numbers.

Definition. Let S be a subset of R. If S is bounded below, then a lower bound w is said to be
an infimum (or a greatest lower bound) of S if no number larger than w is a lower bound of
S.

[S:(powerset R)]
[w:{x:R|(realLowerBoundOf S x)}]
(realInfimum S w):prop=
(not (exists v:{x:R|(realLowerBoundOf S x)} .

(v > w))).

Fig. 2. An Example of Separation in Scunak
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3.4 Pair Terms

Pair terms are inhabitants of class types. In the formalizations, pair terms are frequently
used to address type checking issues in the case of no available type conversion proce-
dures. The type conversion procedure we have discussed in Section 3.3 is a special case
used to convert class types induced by the predicate (inA) for a set A. Currently, the
only general way to convert a term of a class type or of type obj to another class type
is by using pairs as we will describe below.

Suppose a term x of type classφ is expected to behave as a member of type classψ
for predicates φ and ψ. If one can prove that the term x (as an object) satisfies (ψ x),
then the proof can be used to construct a pair term of type classψ, which can be given
as an argument to a term t that expects a member of the latter type.

Technically, x : classφ is (judgmentally) the same as a pair term 〈π1(x), π2(x)〉
with π1(x) : obj and π2(x) : pf (φπ1(x)). The first projection π1(x) of the pair is
the object representation of x. If one can prove that (ψ π1(x)) holds, then the proof
ρ : pf (ψ π1(x)) can be paired together with π1(x) and the resulting pair term has the
type expected by t. In PAM syntax, π1 and π2 are not written down explicitly.

If a term x with type obj is expected to behave as a member of a class type, say
classφ for a predicate φ, then x is paired together with the proof of the proposition
(φx).

An instance of using pair terms in the formalizations in Scunak is the case, where a
member of type class (inB) is expected to behave as if it has type class (inA), but
we do not have a proof that B ⊆ A holds. In this case, the explicit conversion of types in
Scunak (as we have mentioned in Section 3.3) cannot be applied, since the conversion
is specific to sets A and B for which B ⊆ A holds. We use pair terms like in the general
case above. The proof we are looking for is that the object representation of the term
with type class (inB) is an element of the set A.

3.5 Representation of Functions

In Scunak, functions are represented as objects that are functional binary relations on ar-
bitrary sets. This means, an element of the relation’s domain is associated with a unique
element of the relation’s range. The encoding of this representation is presented in [6]
by introducing the kernel constants func, ap and lam with their formal definitions.
They respectively serve the purpose of declaring functions, applying functions to their
arguments and specifying functions.

We briefly mention how these constants are used. A function f from the set A to the
set B can be represented as a member of the class of objects that are functions from A to
B. For an element a of A the function application f(a) is represented as (apAB f a),
where A, B have type set, f has type class (funcAB) and a has type class (inA).
The type of (apAB f a) is class (inB). If t is a term which has type class (inB)
when x is a declared variable with type class (inA), then (lamAB (λx.t) ) has type
class (funcAB) and represents the λ-abstraction that takes an element of the set A
and returns an element of the set B.

An alternative way to work with functions in Scunak is to use the notion of a set of
functions represented by the kernel constant funcSet : obj → obj → obj, which
takes two objects (sets) A and B, and returns the set of functions from A to B.
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Given two sets A and B, we can represent a function f from A to B using funcSet
by declaring variables A, B and f as follows:
A : set
B : set
f : class (in (funcSetAB))
where (in (funcSetAB)) is a predicate that takes a term and checks whether it is in
the set of functions from A to B. In PAM syntax, we write [f:(funcSet A B)].

For declared variables A and B with type set, the semantic interpretation of both a
term with type class (funcAB) and a term with type class (in (funcSetAB)) is
the same: A function from the set A to the set B.

The corresponding function application and λ-abstraction operators for funcSet are
ap2 and lam2 with the following types respectively.
ΠA : set.ΠB : set.class (in (funcSetAB)) → class (inA) → class (inB)
ΠA : set.ΠB : set.(class (inA) → class (inB)) → class (in (funcSetAB))

The use of ap2 and lam2 is similar to that of ap and lam. For terms A : set,
B : set, f : class (in (funcSetAB)), a : class (inA) and x : class (inA),

– (ap2AB f a) represents an element f(a) ∈ B for a ∈ A,
– (lam2AB (λx.t)) represents a function f determined by f(x) = t for x ∈ A.

Sequences As a special case of working with functions in Scunak, we present the for-
malization of the notion of sequences. Fig. 3 shows the informal definition of a sequence
of real numbers taken from [2] and its formal representation in Scunak.

We first formalize a general notion of sequences. Given an arbitrary set A, a sequence
in the set A is a function from the set N of natural numbers to A. We define a set
constructor called sequenceIn that takes a term corresponding to a set A and returns
the set of functions from N to A using the constant funcSet.

Definition. A sequence of real numbers (or a sequence in R) is a function on the set N of
natural numbers whose range is contained in the set R of real numbers.

[A:set]
(sequenceIn A):set=(funcSet N A).
notation RSeq (sequenceIn R).
[X:RSeq]

Fig. 3. Sequences

We instantiate sequenceIn with R to yield the set of functions from N to R, which
we denote as RSeq. Since a sequence in R is a member of the set represented by RSeq,
we can use RSeq as the type of a sequence in R as [X:RSeq] in PAM syntax.

We define the value of a sequence at index n ∈ N using ap2. The value of a sequence
at index n is the value obtained when the sequence, as a function, is applied to n.
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[X:(sequenceIn A)]
[n:N]
notation XinfuncSetNA (sequenceIn#U A (\x.(X::x)) X).
(valueAt A X n):A=(ap2 N A <X,XinfuncSetNA> n).
notation subA (valueAt A).
notation sub (valueAt R).

The term valueAt takes terms representing a set A, a sequence in A and a nat-
ural number n, and returns a term representing the value of the sequence at index
n. The pair term in the definition is to ensure that (ap2 N A) is applied to an argu-
ment with the expected type (funcSet N A). The type of a sequence in R is in PAM
syntax (sequenceIn R), which is not the type expected by (ap2 N A). The PAM
term (sequenceIn#U A (\x.(X::x)) X) is the proof that the context variable X

is in the set of functions from N to A. We obtain the proof by unfolding the defini-
tion of sequenceIn. For readability, we declare XinfuncSetNA as notation for this
proof.

The last component we need in order to be able to work with sequences is a sequence
constructor and we define it using lam2.

[A:set]
[f:N -> A]
notation lam2NAf

(sequenceIn#F A (\x.((lam2 N A f)::x)) (lam2 N A f)).
(sequenceconstr A f):(sequenceIn A)=<(lam2 N A f),lam2NAf>.

The abbreviation sequenceconstr takes a term representing a set A and a meta-
level function with type N -> A and gives back a term corresponding to a sequence
in A that is determined by the meta-level function. Note (lam2 N A f) has the type
(funcSet N A). lam2NAf is a notation that stands for the proof that the object-level
λ-abstraction (lam2 N A f) is a sequence in A. We use lam2NAf to obtain a term of
type (sequenceIn A).

4 A Case Study

After presenting the Monotone Convergence Theorem, Bartle and Sherbert give a num-
ber of examples which use the Monotone Convergence Theorem. We present the for-
mal version of the first of these examples: lim ( 1√

n
) = 0. The proof in [2] essen-

tially consists of one sentence. The statement and short proof from [2] are shown in
Fig. 4.

Example. lim ( 1√
n
) = 0.

Proof. Clearly, 0 is a lower bound for the set { 1√
n

: n ∈ N}, and it is not difficult to show that

0 is the infimum of the set { 1√
n

: n ∈ N}; hence 0 = lim ( 1√
n
).

Fig. 4. An Example on Sequences
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The formalization of the example is divided into the following parts:

– Formalization of necessary notions and theorems the example uses in its statement
and proof in a PAM document

– An analysis of the informal proof to generate underspecified lemmata and their
formalization

– Formalization of the mathematical statement of the example in a PAM file
– Formalization of the proof interactively in Scip

The underlying notions used in the example are the notions of a lower bound and
an infimum of a set (of real numbers), sequences, the limit of a sequence, decreasing
sequences, the square root function, the underlying set of a sequence, and the Monotone
Convergence Theorem. Once these preliminaries are given, we give claims correspond-
ing to the steps of the proof and then the final result.

The notions of a lower bound and an infimum of a set (of real numbers), and se-
quences are introduced in Sections 3.2 and 3.5. We have formalized the notion of the
limit of a sequence and decreasing sequences as a term lim:RSeq -> R -> prop

that takes a sequence of real numbers and a real number, and checks whether the pro-
posed number is the limit of the given sequence, and decreasing:RSeq -> prop

that takes a sequence of real numbers and checks whether the given sequence is de-
creasing. Whenever X is of type RSeq, then (RSeqSet X) (of type set) is defined to
be the underlying set of the sequence X. The term RSeqSetSubsetReals abbreviates
a proof that for any X of type RSeq, the underlying set (RSeqSet X) is in the power
set of the reals.

Given the notions of limit and decreasing, we can represent the Monotone Conver-
gence Theorem in PAM syntax as shown in Fig. 5. We explain Fig. 5 by giving the same
information in natural language:

X: Let X be a sequence of reals.
v: Assume X is decreasing.
a: Let a be a real number.
apf: Assume a is a lower bound of the underlying set of X .
w: Assume a is an infimum of the underlying set of X . (Note that we cannot assert that

a is an infimum unless we know it is a lower bound.)
monotoneConvTheo-b-2: The Monotone Convergence Theorem implies the limit of

X is a.

The example we will consider is shown in PAM syntax in Fig. 6. We begin by ex-
plaining the notation. The symbol X is declared as notation for the sequence 1√

n
. Note

that n is bound in this expression. This is reflected by the fact that n is λ-bound in
the term (\n.(1/ <(sqrt n),(sqrtNatInR-0 n)>)) which has type N -> R (in
PAM syntax). seqconstr takes this term of function types and creates a term of type
RSeq. We next declare S to be notation for the underlying set of X. We declare SPR as
notation for a term proving S is in the power set of the reals. Finally, we declare notation
LB for the set of lower bounds of the set S of reals.

Using this notation, we can represent the facts asserted in the proof of the exam-
ple. Two facts are stated explicitly in the proof: 0 is a lower bound and 0 is an in-
fimum. These two facts are represented as the claims bs-example-3-3-3a-1 and
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[X:RSeq]
[v:|- (decreasing X)]
[a:R]
[apf:|- (a::{x:R|(realLowerBoundOf

<(RSeqSet X),(RSeqSetSubsetReals X)> x)})]
[w:|- (realInfimum

<(RSeqSet X),(RSeqSetSubsetReals X)>
<a,apf>)]

(monotoneConvTheo-b-2 X v a apf w):|- (lim X a)?

Fig. 5. Formalization of Monotone Convergence in Scunak

bs-example-3-3-3a-2 in Fig. 6. These two claims are essentially lemmas we com-
mit to proving at some later time. Note that since the definition of infimum requires
knowing that the element is a lower bound, the fact that 0 is a lower bound (as witnessed
by the claim bs-example-3-3-3a-1) is used in the type of bs-example-3-3-3a-2.
One of the premisses of the Monotone Convergence Theorem is that the sequence is
monotone (in this case, decreasing). While the text does not explicitly say the sequence
1√
n

is decreasing, we include this as a third claimed lemma bs-example-3-3-3a-3.
Finally, we declare a claim bs-example-3-3-3a corresponding to the main result.

notation X
(sequenceconstr R (\n.(1/ <(sqrt n),(sqrtNatInR-0 n)>))).

notation S (RSeqSet X).
notation SPR (RSeqSetSubsetReals X).
notation LB {x:R|(realLowerBoundOf <S,SPR> x)}.

bs-example-3-3-3a-1:|- (0::LB)?
bs-example-3-3-3a-2:
|- (realInfimum <S,SPR> <0,bs-example-3-3-3a-1>)?

bs-example-3-3-3a-3:|- (decreasing X)?
bs-example-3-3-3a:|- (lim X 0)?

Fig. 6. Formalization of the Example in Scunak

After Scunak has read the PAM file containing the information in Figs. 5 and 6, our
goal changes to obtaining a proof term for the main result bs-example-3-3-3a. One
way to give the proof is simply as a proof term. Since we have given names to the steps
of the proof, such a proof term is small (but not enlightening):

(monotoneConvTheo-b-2 X bs-example-3-3-3a-3 0

bs-example-3-3-3a-1 bs-example-3-3-3a-2)

Another way to give the proof is to construct it in Scip. A Scip session which con-
structs the proof is given in Fig. 7. This corresponds more closely to the text. We begin
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the Scip session with a “use” which lists the known facts we can use in the proof. In our
case, we list the Monotone Convergence Theorem along with the claimed steps of the
proof. Now we can construct the proof by giving three “facts.” First, 0 is a lower bound
of { 1√

n
: n ∈ N}. Second, 0 is an infimum of { 1√

n
: n ∈ N}. Note that these two

statements correspond directly to the statements given in the textbook proof in Fig. 4
and to the claims given in Fig. 6. The third fact is that the sequence is decreasing. We
end the proof by giving the Scip command d, indicating that the proof is done. Essen-
tially, we have stated all the steps in the proof in the PAM file and we have then used
Scip to appropriately combine them into a proof term.

prove bs-example-3-3-3a
use bs-example-3-3-3a-1 bs-example-3-3-3a-2

bs-example-3-3-3a-3 monotoneConvTheo-b-2
fact (0::LB)
fact (realInfimum <S,SPR> <0,fact0>)
fact (decreasing X)
d

Fig. 7. Construction of the Proof in Scip

We have also experimented with this example in Isabelle-HOL [12] and Mizar [14].
We mention two interesting points.

The first point regards the use of dependent types to state definitions and theorems
in a manner as close as possible to the text. In particular, we used the (dependent) type
of lower bounds of S in the definition of infimum. In Isabelle-HOL, the restriction to
simple types prevented us from using types. Instead, one must ignore such restrictions
on arguments when defining concepts such as infimum and include the restrictions as
premisses when formulating theorems. In Mizar one can define such dependent types,
but only if they are nonempty. The most satisfying way we found to define such a type
in Mizar was to assume S is a “bounded below subset of reals” when defining the type
of lower bounds of S.

The second point regards the binding mechanism for the n in the sequence 1√
n

. One
can easily give the sequence as a λ-term in Isabelle-HOL. We had difficulty trying to
find an appropriate binding mechanism in Mizar.

In Mizar’s library, the notion of a sequence of reals is represented by the mode
Real_Sequence which is defined in terms of functions from naturals to reals [10].
One can easily use Mizar’s func definition mechanism to define a unary constructor
named seq333a which expects a natural number n and returns a real number 1√

n
.

However, this does not yield the desired member of Real_Sequence. In the end, we
formulated the example in Mizar by stating that if X is a real sequence and for all n, Xn

is 1√
n

, then the limit of X is 0. Essentially this uses the universal quantifier as the binder,
but leaves implicit the fact that the hypothesis determines a unique sequence X . Later,
Krzysztof Retel pointed out that we could have used the func definition mechanism to
define a nullary constructor named seq333a which has type Real_Sequence.
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5 Conclusion

We have demonstrated that mathematical content informally represented in a textbook
can be given a precise formal representation in Scunak. Especially useful aspects of
Scunak include using sets as types, type conversions for subsets, and the handling of
binding constructors (e.g., for binding n in the sequence 1√

n
). However, some aspects

of the formal versions in Scunak were problematic. First, sometimes we needed to ex-
plicitly include proof objects in terms (as the second part of a pair of class type) for the
purposes of type checking. A mechanism allowing users to leave out such proof objects
(by looking them up somehow, not by performing proof search) would be helpful. Sec-
ond, writing proofs as proof terms does not give a very human-readable (or “natural”)
representation of proofs. A MIZAR-style of proof presentation would be preferable. Es-
sentially one would need a “compiler” which translates MIZAR-style proofs into Scunak
proof terms. We leave such improvements as future work.

References

1. Autexier, S., Fiedler, A.: Textbook proofs meet formal logic - the problem of underspeci-
fication and granularity. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp.
96–110. Springer, Heidelberg (2006)

2. Bartle, R.G., Sherbert, D.R.: Introduction to Real Analysis. John Wiley and Sons, New York
(1982)

3. Baur, J.: Syntax und semantik mathematischer texte. Diploma thesis, Saarland University,
Saarbrücken, Germany (1999)
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Abstract. Methods for computerised mathematics have found little ap-
peal among mathematicians because they call for additional skills which
are not available to the typical mathematician. We herein propose to
reconcile computerised mathematics to mathematicians by restoring nat-
ural language as the primary medium for mathematical authoring. Our
method associates portions of text with grammatical argumentation roles
and computerises the informal mathematical style of the mathematician.
Typical abbreviations like the aggregation of equations a = b > c, are not
usually accepted as input to computerised languages. We propose spe-
cific annotations to explicate the morphology of such natural language
style, to accept input in this style, and to expand this input in the com-
puter to obtain the intended representation (i.e., a = b and b > c). We
have named this method syntax souring in contrast to the usual syntax
sugaring. All results have been implemented in a prototype editor de-
veloped on top of TEXmacs as a GUI for the core grammatical aspect of
MathLang, a framework developed by the ULTRA group to computerise
and formalise mathematics.

1 Introduction

Over several millennia, the mathematical community has developed a prodigious
mass of knowledge. Effective communication of this knowledge has been essential
to its dissemination. As various results have arisen and circulated, patterns and
conventions have been developed for their sound and acceptable communication,
leading to a de facto style of recording mathematical concepts in natural lan-
guage. This style is sufficiently standardised to effectively communicate the most
esoteric of ideas, while being flexible enough to record the variety of mathemat-
ical topics which have been explored in the academy of yesteryear and today.

1.1 State of the Field

Since the advent of computer-aided proof in the 1960s, mathematicians and
computer scientists have been seeking effective ways to encode mathematical
concepts in languages of varying structure. Some theorem provers are highly rigid
and distant from natural language, while others such as Mizar and Isar have a
syntax similar to the mathematician’s style. Each prover has its proponents and
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favoured applications, but they are all stark and restrictive when compared with
the fluidity of natural language. None currently has an infrastructure to provide
a direct mapping from a typical natural language mathematical text to its own
language but they all have methodologies to offer natural language integration.
We group these methodologies into four categories.

1. Proof code with embedded natural language. In a typical formal proof
language—such as Isabelle [1] or Coq [2]—there are facilities to incorporate
natural language alongside formal definitions and proofs. Natural language
text parts are treated as commentary in a literate proof document and omitted
by the verification. This method uses structured comments, akin to program-
ming languages, for generating documentation out of programming code. In a
similar fashion, recent developments of intuitive text editors have permitted
plugin-interfacing with theorem provers [3,4,5].

2. Syntax à la natural language. Formal languages often suffer from rough
syntax and strict grammar. To soften the use of formal languages some efforts
have been made to adapt these syntaxis and grammars to mathematicians’
habits. Some developments have gone far in this direction to obtain formal
proof documents that look like natural language texts. The main examples
are Mizar [6] and Isar [7], but more recently some calculi [8,9] were developed
pursuing the idea of a formal representation for pseudo-natural language.

3. Semantic Web data model. Mathematical natural language is a vague and
imprecise language which is unfriendly to computation. Web technologies offer
a compromise in the way they encapsulate natural language and extend it with
semantic tagging and hyperlinking. OMDoc [10] is a precursor in this domain.

4. Natural language generator. If the starting point is a formally defined
language then a natural language representation of the formal content can be
produced. The proof assistant HEΛM [11] has this capability. Furthermore,
[12] and [13] provide facilities to personalise the natural language generated.

We conclude that the primary input for a theorem prover is generally a formal
language and that the natural language of a theorem prover’s document is a
formalisation side effect. In case 2 the document is written in an altered and
restricted natural language while in case 4 the generated (natural) text is only
available after providing the input through a significantly restricted language.
These pseudo-natural languages are by no means the only legitimate representa-
tion of mathematics. Recent work—not pertaining to any particular system—has
explored the more general issue of comparing various formal representations [14],
demonstrating the importance of flexibility in establishing formal models and
providing concrete examples such as the formalisation of matrices [15].

1.2 Contributions

From the above it may be seen that for a semantically helpful computerisation of
mathematical knowledge, today’s systems require the use of a formal language
which differs in some way from the common, natural, mathematical language.
This paper proposes a method to restore natural language as the primary
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input for computerised mathematics. The motivation is to provide mathe-
maticians with straightforward tools they can employ to use computers in their
everyday work. Efforts towards this goal fall into several categories.

1. An integrated system for natural-language text input and grammatical cate-
gorisation. A new approach to authoring natural language texts is presented
in Section 2. As the natural language text is composed, each word or phrase
is placed into a certain grammatical category as enumerated in Table 1. This
is achieved by annotating the original natural language text either during or
after its composition. A typical work pattern is presented in Section 2.4.

2. Tools for reconciling complex expressions to simple grammatical categories.
In Section 3 we give several transformations a user may apply to plain text
in order to cause the expression to cleanly fit a grammatical classification.
These tools are built on top of the aforementioned authoring approach and
work to reconcile varying natural writing styles to the stricter grammatical
rules. The effect is to duplicate, shuffle, and unfold natural language text so
that it is expressed in an explicit manner and strict order. These rewriting
rules constitute a “dual” of syntax sugaring which we call syntax souring.

3. An abstract framework to assert the foundational reliability of the proposed
system. The narrative in Section 4 presents an operational system which pro-
vides a rigorous framework upon which the denotational meaning can rest.
It provides a data structure for mathematical documents, incorporating the
grammatical categorisation, syntax souring notions, and a set of rewriting
rules which achieve the souring functionality presented in the earlier sections.

Throughout the paper, we motivate our proposal on a supplement example of an
excerpt from a textbook [16, Ch. 12] which, due to space limitation, is available
as a supplement to this paper at this paper’s authors’ respective web pages.

1.3 Background: MathLang Table 1. MathLang’s grammatical cate-
gories

term common mathematical objects like “a +
b” or “an additive identity 0”.

set Sets of mathematical objects such as “N”.

noun families of terms such as “ring”.

adjective defines new nouns from old ones.
E.g., “Abelian” is an adjective which modi-
fies the noun “ring” to create the new noun
“Abelian ring”.

statement Expressions like “a+0 = a” which
describe mathematical properties.

declaration the type signature of a new term,
set, noun, adjective, or statement.

definition defines new symbols in mathemat-
ical texts.

step A group of mathematical assertions.

context preliminary assertions prior to a step.

In the development of computer proof
aids, a major goal is to estab-
lish a correspondence between natu-
ral language mathematics and some
core language (e.g., Automath, Coq,
Mizar). The MathLang proposal [17]
is to analyse the text in terms of var-
ious aspects exhibited by the docu-
ment. [18] outlined the core grammat-
ical aspect (CGa). CGa is concerned
first with terminology, entities, and
modifiers which express the knowl-
edge and moreover their relationships
to one another. Table 1 lists in bold
face, the grammatical categories used
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at the CGa aspect of MathLang together with the colour coding. In the current
paper we focus on a text and symbol aspect (TSa) of mathematical knowledge
which is able to flexibly represent natural language mathematics.

2 Box Annotation, an Explicit Typing of Expressions

We propose an authoring technique in which the mathematical text is input to
the computer exactly as it is written on paper by the mathematician. As an
author composes a document, it is desirable to truly derive any formal or sym-
bolic version from this original document. We propose to decorate the original
text with extra information. This extra content has to be more precise, complete
and computation-friendly than natural language. With such extra information
intermingled with the original text, it is possible to ensure that subsequent trans-
lations are consistent with and faithful to the natural language text.

2.1 Box Annotation

The approach of this paper augments the original natural language text with
supplementary information. We do so by wrapping (at the screen), pieces of text
with annotation boxes. The background colour of an annotation box informs
about the MathLang-grammatical role of the wrapped text (following the colour
coding of Table 1). Notice that once we remove these annotation boxes we find
the text completely unchanged. Take from our supplement example the sentence
“There is an element 0 in R such that a +0 = a”. The grammatical information
(in terms of MathLang’s grammatical constructions) can be easily inferred from
the original text as shown by the following annotation boxes. The boxes sur-
rounding “an element 0”, “a”, “0” and “a + 0” indicate that these expressions
are terms. “R” is wrapped in a set box and “an element 0 in R” in a decla-
ration box. The box surrounding “a + 0 = a” indicates that this equation is a
statement. The whole sentence is put in a step box.

There is an element 0 in R such that a + 0 = a

This expression would correspond to the pseudo-logic code eq(plus(a,0) ,a)

which differs from its box-annotated natural language equivalent by its names-
paces. The symbol “+” corresponds to the identifier plus. Accordingly, one
might argue that the symbols = and + could have been used with infix notation
and relevant symbols’ precedence. We would have obtained an expression a+0=a

which is similar to the natural language sentence’s equation. But imagine a situ-
ation where, instead of stating the equality between a+0 and a by an equation,
the verb “equal” is used: a + 0 equals a . The sentence would be printed dif-
ferently but would still mean that a+0=a . An equation and its natural language

equivalent should reflect the same meaning (a+0=a in our example). Similarly,
a natural language sentence and its equivalent formula should get similar box
annotations. Our sentence could look like: 0 ∈ R , a + 0 = a .
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2.2 Interpretation
There is 0an element 0 in RR such that eq plus aa + 00 = aa

There is 0an element 0 in RR such that eq plus aa + 00 equals aa

00 ∈ RR , eq plus aa + 00 = aa

To establish the mean-
ing of the text con-
tained in each an-
notation box, we at-
tribute to each box its interpretation in our grammar (see Table 1). The boxes
surrounding “an element 0” and “0” get 0 as interpretation attribute. The box
surrounding “R”, “a”, “a + 0” and the equation get as interpretation attributes
R, a, plus and eq, respectively. Each interpretation attribute is printed in a
typewriter typeface on the left hand side of the annotation box.
With these examples we see that MathLang’s grammar is not a natural language
grammar but a mathematical justifications grammar (following de Bruijn [19]).

2.3 Nested Annotations

In our example we see also that some boxes are inside other boxes. In the case
of our equation, each inner box is interpreted as an argument for its surround-
ing box. The nesting of boxes indicates that some annotated expressions are
sub-expressions of others. It is a straightforward automatic process to create a
MathLang grammatical expression out of a text with box annotations.

There is 0an element 0 in RR such that eq plus aa + 00 = aa

{ 0 : R; eq ( plus ( a, 0 ), a ); };

We show here the Math-
Lang grammatical expres-
sion corresponding to our
box-annotated text. This
expression is written us-
ing the abstract syntax we presented in [18]. Note that this syntax is not meant
to be used by the end-user of MathLang, it is only designed for theoretical
discussion on MathLang’s grammar. The MathLang end-user edits his natural
language text with annotation boxes, as shown in Section 2.4 and in the supple-
ment example. The internal syntax used in our implementations follows XML
recommendations.

2.4 Automatic Grammatical Analysis

This authoring method with annotation boxes was implemented as a plugin
for the scientific text editor TEXmacs. During or after the editing of a natu-
ral language text, an author is asked to wrap relevant pieces of text in Math-
Lang’s annotation boxes. Customised views are provided within the MathLang
plugin to toggle the display of several features of the document including the
coloured boxes resulting in this wrapping and the interpretations introduced in
Section 2.2. The user easily obtains the following views (once with annotation
boxes printed as coloured boxes and then with these boxes hidden):
There is an element � in R such that a�� � a

There is an element � in R such that a�� �a

The MathLang plugin communicates the content of the document to the Math-
Lang grammar checker given in [18], employing TEXmacs as an integrated graph-
ical environment for natural language input, annotation, and grammar checking.
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Continuing with our sentence-example, let us assume that R, 0, = and +
were properly introduced in the larger document. When the user is satisfied
with his annotation of the sentence, the TEXmacs plugin is instructed to send
the entire document to the type checker. The checker analyses the grammatical
structure of the MathLang document and finds out that a has not been properly
introduced in our sentence. A set of errors1 with their locations in the TEXmacs

document are sent back to the plugin to be shown to the user. Here is a view
of the text with annotation boxes and their interpretations printed in between
angle brackets < and >, and errors’ labels printed in between stars *.

� �
There is

� � � � �
an element � in

� R �
R such that �e���

� e q u a l �
�e���

� p l u s �
�e�� e���

� a �
a� � � � � � �e�� e���

� a �
a

Error (e-1): Anticipated instance of "a"
Error (e-2): Categories mismatch , Unspecified expected , not term.
Error (e-3): Types mismatch for "plus", (term,term):term expected , not (Unspecified ,term):term.
Error (e-4): Anticipated instance of "a"
Error (e-5): Categories mismatch , Unspecified expected , not term.
Error (e-6): Types mismatch for "equal", (term,term):stat expected ,
not (term,Unspecified ):stat.

To fix these errors we simply define a as it was done in the original text (see the
supplement example). The extra “for all a in R” text is wrapped in a context
box annotation which indicates that it forms the context of the equation.

There is an element � in R such that a�� � a for all a inR

3 Souring Annotation

The grammatical box annotations of Section 2 are guided by the style in which the
original natural-language sentences were written. Mathematical writing styles are
uneven and do not always fit such simplistic annotations. To adapt to any style,
we need additional box annotations which help interpret the author’s style. We
believe it is necessary to separate grammatical and style annotations.

3.1 Syntax Souring

Mathematicians use mathematical natural language as a medium for communicat-
ing mathematical knowledge, but this language is highly automation-unfriendly
for computer software. We showed in [12] that MathLang has constructions that
correspond to the way common mathematical justifications are structured. Math-
Lang is automation-friendly and mimics the mathematical natural language struc-
ture of justification. Therefore MathLang authoring does not require the user to
alter or translate the document’s knowledge for computerisation, although there
is a need to adjust the writing style when encoding text directly into the core
MathLang language. Because we regard our starting language, natural language,
to be the sweetest for human readers, we call this modification syntax souring.

1 The high number of errors is due to the fact that the checking of the document does
not stop after one error is found but analyses the entire document. An error may
point at several locations in the document, this to cover all expression involved in a
typing error.
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This term describes the process of transforming natural language into syntacti-
cally formalised language (the core grammatical MathLang of [18]). The additives
needed to describe how to perform a transformation of natural language to a core
formalised language are known as souring annotation.

Programming language
+

Syntactic sugar

de-sugaring
⏐⏐�

Core programming language

Syntax sugaring. The notion of syntax sug-
aring is well known by programmers. Syntactic
sugar is added to the syntax of programming
languages to make it easier to use by humans.
Syntax sugaring lightens the syntax without af-
fecting expressiveness.

Souring: dual of de-sugaring. Syntactic sugar is usually an additive for the
syntax of formal language. De-sugaring is the process of getting rid of the sugared
bits by replacing them with proper core syntax expressions.

Natural language
+

Grammatical annotations
+

Syntactic sour bits

souring
⏐⏐�

Core sour language

In our case the primary input is the math-
ematician’s natural language which we want
to extend for computer software use. Souring
unfolds the sour bits to produce a sour docu-
ment, i.e. a document which is formal enough
to be understood by computer software. The
original document and the sour one do not belong to the same type of document.

The duality between syntax sugaring and syntax souring resides in the fact
that both are methods to humanise the authoring of rigid languages but have
a different starting point (i.e., programming language for syntax sugaring and
natural language for syntax souring). De-sugaring adapts rigid languages for
human consumption. Souring rigidifies natural language for software use.

3.2 Denotational Representation

We give here the denotational representation which is formalised in Section 4.1.

Document. Our starting point is the mathematician’s text (as he wrote it on
paper) which is composed by a mixture of natural language text and formulae
formed by symbols. This primary input corresponds to DF (formed by F in-
dividuals) in the abstract syntax of Section 4.1. We add to this primary input,
grammatical and souring annotations that wrap portions of the text. We already
saw in Section 2 how we represent grammatical annotations. In this section we
explain how we represent the souring annotations discussed in Section 3.1. We
denote by T a portion of text which may include formulae, grammatical anno-
tations and souring annotations. We denote by A an arbitrary annotation.

Grammatical annotations. A grammatical annotation is an instance of one
of the grammatical categories term, set, noun, adjective, statement, decla-
ration, definition, context, or step (see Table 1). Each instance of a gram-
matical annotation may get an attribute which corresponds to the grammatical
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annotation’s interpretation given in Section 2. We represent grammatical anno-
tations by a box whose background colour—according to the colour coding of
Table 1—informs the grammatical category and whose interpretation is printed
on the upper left-hand side of the box using courier typeface. Here is for in-
stance the term a annotated with a term-box with "a" as interpretation: aa .
We use G, G′, G1, etc., to range over grammatical interpretations. Grammatical
annotations correspond to G labels in the formal system presented in Section 4.1.

Souring annotations. Sour bits correspond to souring annotations. We de-
note them by a distinguishable font colour and a thicker box for the annotation
they describe (i.e., lista, b, c ). We define in the rest of this paper the following
syntax souring annotations (which correspond to the elements souring labels Su

of Section 4.1): position i, fold-right, fold-left, base, list, hook, loop,
shared and map (where i is a natural number).

In-order notation

T ( A1T1 , . . . , Ak Tk )
or

T

⎛⎜⎜⎜⎝
A1T1

.

.

.
Ak Tk

⎞⎟⎟⎟⎠
Un-ordered, named notation

T
[

n1 : A1T1 , . . . , nk : Ak Tk

]
or

T

⎡⎢⎢⎢⎣
n1 : A1T1

.

.

.

nk : Ak Tk

⎤⎥⎥⎥⎦

Patterns. To describe the souring rules, we need
to reason about the annotation boxes contained in
a text. To do so, we add parameters to a text T
to identify the text patterns that could be trans-
formed. We use two different notations for these
parametrised texts: the in-order notation where ar-
guments should appear in T in the same order as
they appear in the pattern and the un-ordered nota-
tion where the order of arguments is unimportant.
We denote such parametrised notation, with A1T1 ,
. . . , AkTk being the arguments for T , as in the ac-
companying diagram. Sometimes, optional names
n1, . . . , nk are used as markers to determine the argument’s location in the text.
The behaviour of parametrised text is reflected in the de-formatting function (see
Definition 5) and compatibility property (see Definition 6) stated in Section 4.

3.3 Souring Transformations

In this section we indicate how to use our souring annotations and describe the
result of a souring transformation where the souring notation is unfolded to
obtain a text where grammatical annotations are similar to those of Section 2.
Such a document could then be checked according to the MathLang grammatical
checker of [18] discussed briefly in Section 2.4.

T

⎡⎢⎢⎢⎣
position 1T1

...
position nTn

⎤⎥⎥⎥⎦ souring−−−−−→ T (T1, . . . , Tn)

Re-ordering. position i When deal-
ing with a natural language mathe-
matical text, one regularly faces situ-
ations where two expressions holding
similar knowledge are ordered differ-
ently. The re-ordering transformation corresponds to →pos of Section 4.2. Con-
sidering the expression “a in R” from our supplement example, one can easily
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imagine the author using “R contains a” instead. The position souring anno-
tation is meant for reordering inner-annotations. The souring rewriting function
reorders the elements according to their position indices.

in position 2 RR contains position 1 aa

in a R

The expressions “a in R” and “R contains
a” should both be interpreted as in(a,R) if
in is the set membership relation. To indicate
in the second expression that the order of the
argument is not the “reading” order, we an-
notate R and a with position 2 and position 1, respectively. It is common
for binary symbols like ⊂ to have a mirror twin like ⊃. The position souring
annotation usefully gives the same interpretation to twin symbols.

Sharing/chaining. shared hook loop Mathematicians have the habit of ag-
gregating equations which follow one another. This creates reading difficulties for
novices yet contributes to the aesthetic of mathematical writing. The shared and
hook/loop souring annotations are solutions which elucidate such expressions.

G1T1
sharedT G2T2

souring−−−−−→ G1T1 T G2T T2

The shared annotation indi-
cates that an expression is to be
used by both its preceding and following expressions. The shared expression
is inlined at the end of the preceding expression and at the beginning of the
following one. This transformation corresponds to �share of Section 4.2.

eq 0 + a0 = shared a0 eq = shared a(0 + 0) eq = a0 + a0

eq 0 + a0 a0 eq a0 a(0 + 0) eq a(0 + 0) a0 + a0

The full interpretation of this expression being:
eq(plus(0,times(a,0)),times(a,0));
eq(times(a,0),times(a,plus(0,0)));
eq(times(a,plus(0,0)),plus(times(a,0),times(a,0)))

The document example
we chose to computerise
(see our supplement exam-
ple) contains several sen-
tences which are made eas-
ier to computerise by the
use of sharing. The multiple
equation “0+a0 = a0 = a(0+0) = a0+a0” is certainly the best example as it
requires the use of two shared annotations. We can see that a0 and a(0+0) are
shared by two equations each. We annotate them as being shared to obtain an
unfolded result equivalent to “0+a0 = a0, a0 = a(0+0), a(0+0) = a0+a0”.

T

⎛⎝ hookT ′

loop

⎞⎠ souring−−−−−→ T

(
T ′

T ′

)The tuple of souring annotations hook/loop
indicates the expression contained in the hook
should be repeated in the loop. We named this
concept chaining because it permits the separation of two expressions which are
effectively printed as one in a natural language text. Chaining provides results
similar to sharing (any sharing could be expressed in terms of chaining), but is
more expressive. This transformation corresponds to �chain of Section 4.2.

forall∀ a∈ R , and and eq 0 + a0 = hook a0 eq loop = hook a(0 + 0) eq loop = a0 + a0

forall a ∈ R and and eq 0 + a0 a0 eq a0 a(0 + 0) eq a(0 + 0) a0 + a0
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The full interpretation of this expression being:
forall(a:R, and( and( eq(plus(0,times(a,0)),times(a,0)),

eq(times(a,0),times(a,plus(0,0))) ),
eq(times(a,plus(0,0)),plus(times(a,0),times(a,0))) ))

Let us see an example where a shared souring annotation could not have been
used. If we consider the equation we used in the sharing example and decide to
quantify this equation over a, we would obtain “∀a ∈ R, 0+a0 = a0 = a(0+0) =
a0+a0” which is effectively a shortcut for “∀a ∈ R, 0+a0=a0 ∧ a0=a(0+0) ∧
a(0+0)=a0+a0”. We can see that in this example the individual equations are
combined using two binary operators and, the combination of whose annotation
boxes disallows the use of shared.

List manipulations. fold-right base list fold-left base list map list The list sour-
ing annotations indicate how lists of expressions have to be unfolded into Math-
Lang interpretations. We define two list folding annotations, fold-right and
fold-left, and a mapping annotation, map.

fold-right Tf

⎡⎣ b : base Tb

l : list T1 . . . Tk

⎤⎦ souring−−−−−→ Tf

⎡⎢⎢⎣ b : Tf

⎡⎣ b : Tf

[
· · ·Tf

[
b : Tb

l : Tk

]
· · ·

]
l : T2

⎤⎦
l : T1

⎤⎥⎥⎦
The fold-right souring annotation defines a pattern which is repeated for each
element of the list argument. For each repeated pattern, the list inner an-
notation is replaced by one element of the list and the base inner annotation
is replaced by the pattern with the next element of the list. fold-left works
similarly but starts with the last element of the list. These transformations cor-
respond to →fold of Section 4.2.

A major use of the fold-right souring annotation is to handle quantification
over multiple variables. Considering the sentence “for all a, b, c in R [...] (a+b)+
c = a+(b+c)”, we would like to use one single forall instance for each variable
a, b and c. We simply annotate the list of variables as such and the base equation
as base and the souring unfolding creates a fully expanded interpretation on our
behalf.

fold-right forall for all list a a , b b , c c in R R base eq (a + b) + c = a + (b + c)

forall a R forall b R forall c R eq (a + b) + c = a + (b + c)

The full interpretation of this expression being:
forall(a:R, forall(b:R, forall(c:R,eq(plus(plus(a,b),c),plus(a,plus(b,c))) ) ) )

map Tf

(
list T1 . . . Tn

)
souring−−−−→ Tf (T1) . . . Tf (Tn)

The map souring annotation
also defines a pattern but
with only one argument being
list. This pattern is also repeated for each element of the list. The resulting
expression is a sequence. It corresponds to →map defined in Section 4.2.

map Let list aa and bb belong to Ra ring R

a R b R

Similarly to folding, this souring annota-
tion is useful for declarations, definitions
or statements over several things. In the
case of the sentence “Let a and b belong
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to a ring R” taken from our supplement example, the variables a and b are
declared simultaneously.

4 Operational System

Having presented our method in an intuitive, denotational style, we now give
the formal system behind it and the foundation for MathLang documents.

4.1 Abstract Syntax

Let N denote the natural numbers, use (−;−) to denote ordered pairs, and let
functions be sets ϕ of ordered pairs with a domain dom(ϕ) = {a | ∃b such that
(a; b) ∈ ϕ}. A sequence is a function s for which dom(s) = {n | 0 ≤ n < k}
for some k ∈ N. We write [] for the empty sequence and [x0, x1, . . . , xn] for the
sequence s such that s(i) = xi for each i ∈ dom(s) = {0, . . . , n}. Upon that
sequence is defined the metric |s| = n + 1. We define s1, s2, the concatenation of
sequences s1 and s2, as the new sequence s such that dom(s1, s2) = {0, . . . , |s1|+
|s2| − 1}, s(i) = s1(i) for i ∈ dom(s1) and s(i) = s2(i) for i − |s1| ∈ dom(s2).
Concatenation is associative. Moreover, [], s = s and s, [] = s.

Let L = F ∪G ∪ S to be the set of labels over which � ranges where elements
of F, resp. G, resp. S, are formatting, resp. grammatical, resp. souring labels.
F (over which f ranges, cf. Definition 4) consists of formatting instructions

and varies according to the typesetting system used.
G = C × I where C = {term, set,noun, adj, stat,decl,defn, step, cont},

and contains identifiers for the primitive grammatical categories of Table 1. The
set I consists of strings used for identifying abstract interpretations (e.g., 0, R,
eq, plus and a are the interpretation strings used in the examples throughout
Section 2). We let g, c and i range respectively over G, C and I.

We let s range over S = Su ∪ Si where Su contains souring identifiers to be
employed directly by the user while Si holds several identifiers used internally
for rewriting. Su and Si are disjoint and are as follows:

Su = {fold-left,fold-right,map,base,list,hook,loop,shared} ∪ ({position} × N)

Si = {hook-travel,head,tail,daeh,liat,right-travel,left-travel} ∪ ({cursor} × N)

Definition 1 (Document). Let D be the smallest set such that:
1. [] ∈ D,
2. if d ∈ D and � ∈ L then [(�; d)] ∈ D, and
3. if both d1 and d2 are elements of D then (d1, d2) ∈ D.
A MathLang document is an element of the set D. In addition, we denote by
DF , DG , DF∪G, DG∪S and DF∪G∪S the sets of documents for which labels are
in F, G, F ∪ G, G ∪ S and F ∪ G ∪ S, respectively.

Remark 1 (Notational convention). For convenience, [(�; d)] abbreviates to �〈d〉. Fur-
thermore, when not ambiguous �〈[]〉 abbreviates to �. In the case of grammatical labels
ordered pairs, we denote the interpretation (second element of the pair) by an ad-
joined superscript. A pair (c; i) from G is denoted by ci. Similarly, an ordered pair
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from {position}× N (respectively {cursor} × N) is denoted by a superscript number
(second element of the pair) adjoined to position (respectively cursor).

Definition 2 (Sub-document). We define sub-document, and we denote by
�G , the binary relation between documents such that:

d �G d (SUB1)

d �G g〈d1〉 if d �G d1 (SUB2)

d �G (d1, d2) if d �G d1 or d �G d2 (SUB3)

Remark 2. It is important to notice that our sub-document property (SUB2) is
restricted to grammatical labels which means that for any label � ∈ G and any
documents d1 and d2 such that d1 �G d2, we have that d1 �G �〈d2〉.

Definition 3 (Label inclusion). We define label inclusion, and we denote by
∈̃G , the binary relation between a label and a document such that:

� ∈̃G �〈d〉 (INC1)

� ∈̃G g〈d〉 if � �= g and � ∈̃G d (INC2)

� ∈̃G (d1, d2) if � ∈̃G d1 or � ∈̃G d2 (INC3)

Remark 3. Note that our label inclusion property (INC2) is restricted to gram-
matical labels, which means that for any labels �1 ∈ G and �2 ∈ L such that
�1 = �2, and any document d such that �2 ∈̃G d, we have that �2

˜∈G �1〈d〉.

Definition 4 (Rendering functions). Let f : D → DF be a function where:

f([]) = [] (FORM1)

f(�〈d〉) =
{

�〈f(d)〉 if � ∈ F
f(d) otherwise

(FORM2)

f(d1, d2) = f(d1), f(d2) (FORM3)

Thus, f flattens a given document d at any label from G or S, removing all such
labels. Once this is achieved, it will be possible to use r : DF → F, where:

r([]) = ε (REN1)

r(f〈d〉) = fill(f, [r(d(0)), . . . , r(d(|d|−1))]) (REN2)

r(d1, d2) = r(d1) • r(d2) (REN3)

Where, in a specific typesetting system, ε is the blank formatting instruction, •
is the composition operator and fill is a formatting-system-specific function. The
function fill interprets a formatting instruction (first argument) with a sequence
of rendered documents passed as argument. One can imagine a formatting in-
struction to be a template with holes and fill to simply fill these holes. The number
of vacancies exhibited by the first argument of fill should be equal to the length
of the sequence, which is the second argument of fill. The function fill returns an
element of the set F which is a formatting instruction requiring no argument.
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Definition 5 (De-formatting function). To prepare a document for souring,
we strip it of all formatting elements using the function df : D → DG∪S where:

df([]) = [] (DF1)

df(�〈d〉) =
{

d if � ∈ F
�〈df(d)〉 otherwise

(DF2)

df(d1, d2) = df(d1), df(d2) (DF3)

4.2 Souring Rewriting Rules

Definition 6 (Compatibility, Reflexive transitive closure, Normal form).
We define the following compatibility property for a rewriting rule →n.

d1, d, d2 →n d1, d
′, d2 if d →n d′ (COMP1)

g〈d〉→ g〈d′〉 if d →n d′ (COMP2)
We denote by �n the reflexive transitive closure of →n.
We define the n-normal form relatively to →n and we denote by NFn the property
on a document d such that no �n rewriting can be applied to d.
Note that our compatibility rule (COMP2) is restricted to grammatical labels.

Below are the formal rewriting rules for souring transformations from Section 3.1.

head〈d1,d2〉→listd1,head〈d2〉 where list ˜∈G d1

tail〈d1,d2〉→listd1,tail〈d2〉 where list ˜∈G d1

daeh〈d1,d2〉→listd1,daeh〈d2〉 where list ˜∈G d1

liat〈d1,d2〉→listd1,liat〈d2〉 where list ˜∈G d1

head〈g〈d1〉,d2〉→listg〈head〈d1〉〉,d2

where list ∈̃G d1

tail〈g〈d1〉,d2〉→listg〈tail〈d1〉〉,d2

where list ∈̃G d1

daeh〈g〈d1〉,d2〉→listg〈daeh〈d1〉〉,d2

where list ∈̃G d1

liat〈g〈d1〉,d2〉→listg〈liat〈d1〉〉,d2

where list ∈̃G d1

head〈list〈g〈d1〉,d2〉,d3〉→listg〈d1〉,d3

tail〈list〈g〈d1〉,d2〉,d3〉→listd2,d3

daeh〈list〈d1,g〈d2〉〉,d3〉→listg〈d2〉,d3

liat〈list〈d1,g〈d2〉〉,d3〉→listd1,d3

g1〈d1〉,shared〈d〉,g2〈d2〉→shareg1〈d1,d〉,g2〈d,d2〉
hook〈d〉→chaind,hook-travel〈d〉
hook-travel〈d〉,loop→chaind

hook-travel〈d0〉,d1,d2→chaind1,hook-travel〈d0〉,d2

where loop ˜∈G d1

hook-travel〈d0〉,g〈d1〉→chaing〈hook-travel〈d0〉,d1〉
g〈d1,hook-travel〈d0〉〉→chaing〈d1〉,hook-travel〈d0〉
positioni〈d1〉,positionj〈d2〉→pos

positionj〈d2〉,positioni〈d1〉
where j<i

�〈position1〈d1〉,d2〉→pos�〈d1,cursor1,d2〉
cursori,positioni+1〈d1〉,d2→posd1,cursori+1,d2

�〈d,cursori〉→pos�〈d〉

fold-right〈d0〉→foldright-travel〈d2〉,d1

where d0�souringd′
0, head〈d′

0〉�listd1

and tail〈d′
0〉�listd2

right-travel〈d1,d2〉→foldd1,right-travel〈d2〉
where base ˜∈G d1

right-travel〈g〈d1〉,d2〉→fold

g〈right-travel〈d1〉〉,d2

where g =base and base ∈̃G d1

right-travel〈d1〉,base〈d2〉→fold

d2,right-travel〈d2〉
where list �G d1

right-travel〈d1〉,base〈d2〉→foldfold-right〈d1〉

fold-left〈d0〉→foldleft-travel〈d2〉,d1

where d0�souringd′
0, daeh〈d′

0〉�listd1

and liat〈d′
0〉�listd2

left-travel〈d1,d2〉→foldd1,left-travel〈d2〉
where base ˜∈G d1

left-travel〈g〈d1〉,d2〉→foldg〈left-travel〈d1〉〉,d2

where g =base and base ∈̃G d1

left-travel〈d1〉,base〈d2〉→foldd2,left-travel〈d2〉
where list �G d1

left-travel〈d1〉,base〈d2〉→foldfold-left〈d1〉

map〈d〉→map [] where list �G d

map〈d0〉→mapd1,map〈d2〉
where d0�souring d′

0, head〈d′
0〉�listd1

and tail〈d′
0〉�listd2
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Definition 7 (Souring rewriting rule). The souring rewriting rule, denoted
by →souring is defined as d0 →souring d4 where d0 �share d1 (d1being in a
NF share), d1 �chain d2(d2being in a NF chain),d2 �pos d3(d3being in a NF pos),
d3 �lists d4(d4being in a NF lists).

The souring a document is the application of �souring until NF souring is reached.

5 Related Work

The natural-to-abstract work pattern which has been presented in this paper
will be useful in a wide variety of settings. One possible area of application is
work being done with optical character recognition of mathematics. In the work
of the Infty Project [20,21], for example, it is desirable to automate the process of
extracting information from printed material. As MathLang becomes capable of
being automated, it will provide further aid to extracting semantic information
from a document with as little hand-translation as possible.

The TEXmacs plugin environment and method of editing causes MathLang
to be a visual language. Using visual languages for knowledge representation is
becoming more popular, and its benefits are obvious. By displaying and editing
the logical structure of a mathematical document, the categorisation of various
portions of text is made more clear and the structure more lucid. This could
certainly lead to a new generation of literate programming [22].

In Computational linguistics, transformational grammars [23, Ch.5] provide a
morphism method similar to souring. Nevertheless they are a natural language
grammar and do not provide this separation between the original human-medium
(natural language) and the software-medium (MathLang core language).

6 Conclusion and Future Work

We demonstrate in this paper the feasibility of restoring natural language as
the primary input for mathematical authoring on computers. This method will
benefit mathematicians as it permits the use of computer-assisted authoring
without requiring skills in computer-based formalisation. Thus, this method will
benefit the mathematical knowledge community as it makes the bridge between
traditional and computerised mathematics. Since the souring rewriting rules are
defined on top of a generic document format, it should be straightforward to
adapt the rules to some specific formatting system and core “sour” language.

The work in [12] established a language and a system for encoding mathe-
matical texts with transformations which permitted viewing the document in
various useful forms, especially natural language. The current development im-
proves on this by allowing the user to work directly in natural language while
making use of a number of automated features to do the rest. Even so, the set
of souring rules with which the system has been augmented is almost certainly
incomplete. There are some known mathematical constructs (mentioned below)
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for which a satisfactory annotation has not yet been found, and there are surely
others which have not yet come to the attention of this development team.

Current known shortcomings in the system include good handling of expres-

sions with omitted terms, such as
n times︷ ︸︸ ︷

x + . . . + x, 22..
.2

, and 1
1+ 1

1+···
. Proper treat-

ment of proof by induction is under active investigation, as well as satisfactory
treatment of relations such as modular equivalence e.g., −1 ≡ 2( mod 3). Other
priorities are developing/integrating methods to automate the annotation pro-
cess, which at present can be redundant and tedious, and gathering data on
use and work patterns by mathematicians to guide further tool and interface
development. Anecdotal tests have indicated that the system is very easy to use,
but further investigation will be necessary to ensure that the present—or any
future—implementation provides maximal assistance to the mathematical user.
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Abstract. There are many styles for the narrative structure of a mathe-
matical document. Each mathematician has its own conventions and tra-
ditions about labeling portions of texts (e.g., chapter, section, theorem or
proof ) and identifying statements according to their logical importance
(e.g., theorem is more important than lemma). Such narrative/struc-
turing labels guide the reader’s navigation of the text and form the key
components in the reasoning structure of the theory reflected in the text.

We present in this paper a method to computerise the narrative struc-
ture of a text which includes the relationships between labeled text en-
tities. These labels and relations are input by the user on top of their
natural language text. This narrative structure is then automatically
analysed to check its consistency. This automatic analysis consists of two
phases: (1) checking the correct usage of labels and relations (i.e., that
a “proof” justifies a “theorem” but cannot justify an “axiom”) and (2)
checking that the logical precedences in the document are self-consistent.

The development of this method was driven by the experience of com-
puterising a number of mathematical documents (covering different au-
thoring styles). We illustrate how such computerised narrative structure
could be used for further manipulations, i.e. to build a skeleton of a
formal document in a formal system like Mizar, Coq or Isabelle.

1 Introduction

The past forty years have seen a sharp increase in the use of the computer by
the mathematician for his work purposes. Such use covers communication, au-
thoring, processing, and checking/verifying mathematical knowledge. There ex-
ists already a number of flexible computer tools that allow producing aesthetic
presentations of a mathematical document. This presentation, among others,
comprises of a clear structure of a document, and usage of a ’fancy’ and easy to
read fonts and symbols. However, the presentation of a document and its struc-
ture also depends on the style of the mathematician and is usually expressed in
terms of structural components (e.g., chapter or section) and mathematical com-
ponents (e.g., lemma or proof). Moreover, a clear appearance of such components
as well as explicitly specified relations between such components enhances the
readability of the document and makes the navigation of a text more enjoyable.

Different styles of writing mathematics. The presentation of a mathemat-
ical document is a matter of writing style and involves among other things, a

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 296–312, 2007.
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narrative structure of the document. This narrative structure plays an impor-
tant narration role throughout the theory presented. Clearly expressed relations
between mathematical components show logical dependencies which help the
reader recognize the theory structure of a paper before reading the details.

We prove that two congruences can be
added or subtracted from each other provided
both have the same modulus.

Let
a ≡ b (mod m) and c ≡ d (mod m). (2)

In order to prove that a + c ≡ b + d (mod m)
and a − c ≡ b − d (mod m) it is sufficient to
apply the identities

a + c − (b + d) = (a − b) + (c − d)

and (a − c) − (b − d) = (a − b) − (c − d).

Similarly, using the identity

ac − bd = (a − b)c + (c − d)b,

we prove that congruences (2) imply the
congruence ac ≡ bd (mod m).

Consequently, we see that two congruences
having the same modulus can be multiplied by
each other. [...]

It follows from the theorem on the
multiplication of congruences that a
congruence can always be multiplied
throughout by any integer and that each side
of a congruence can be raised to the same
natural power. [...]

W.Sierpiński [17, Chapter V, §1]

The reader could find his way while
reading the document depending on
how the structure and dependencies
are expressed. One could produce a
clear structure of a document by spec-
ifying explicitly where the important
parts (e.g., sections, definitions, etc.)
start and end, and also where the de-
pendencies are clearly expressed. In
such case, the reader has a clear view
of the theory in the document (see
Figure 7). Otherwise, if the mathe-
matician writing style is newspaper-
like, the reader will have a difficult
task finding his way in the document
(see the example on the right).

Motivations. In this paper we con-
centrate on the computerisation of the
narrative structure of a document. Our main motivations are as follow:

1. To handle the structure of a mathematical document as it appears on paper and
at the same time to allow further computerisation and analysis. Our proposed
annotation system can deal with different styles of writing mathematics.

2. To allow the presentation of a text with different layouts. Currently the pre-
sentation of the structure of a documents is rather linear and it is not clear
which parts (chunks of text) of the document depend on which (which theo-
rem depends on which lemma or definition etc.). Ideally the presentation of a
document should be flexible, and should allow the full automatic generation
of different views of the structure of a document: dependency graph, graph of
logical precedences, skeleton of the document in a chosen formal system, etc.

3. To allow further formalisation. Capturing the narrative structure of a docu-
ment is not only for computerisation purposes, but also for further formalisa-
tion. The automatically generated views of the narrative structure of a text
are very important to generate further forms of the text including a more
formalised version (in a chosen formal system) as we illustrate in this article.

Contributions. Our contributions can be summarised as follows:

1. A Document Rhetorical aspect (DRa) ontology and a related annotation sys-
tem. We present an ontology and an associated markup system, that offers
a way to make explicit the traditional components of a mathematical text
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(such as chapters, sections, proofs) and the dependencies between them. The
ontology is very easy for the mathematician to use and requires no extra skills.

2. Automatic processing of the narrative structure of a text. Automated pro-
grams take the mathematician’s DRa annotated mathematical text and build
a number of internal representations and screen views of the narrative struc-
ture of the text. This includes: a dependency graph that represents relations
between annotated parts of text, and its graph of logical precedences. The
internal representations are used for further consistency analysis and formal-
isation while the screen views show the reader the narrative structure.

3. Reuse of the narrative structure of a document. We show how the automati-
cally generated representations of the narrative structure of a document lead
to a skeleton of a formal document in the Mizar Language [16]. Similar steps
lead to formal skeletons in other formal systems.

Outline. In Section 1.1 we present the MathLang roadmap. Section 2 describes
our approach to annotating the structure of mathematical documents and gives
the DRa ontology used in the annotation system. Section 3 presents automatic
transformations of the document’s narrative structure into different views. We
also present a formal mathematical model describing those automatically gen-
erated views. In Section 4 we present the analysis process of the dependency
graph generated from the annotation. In Section 5 we express how the structure
and its different views are used to build a skeleton of a part of a Mizar article.
Finally, in Section 6 we describe related work, conclude and discuss future work.

1.1 The MathLang Project Roadmap

Since 2001, the MathLang project [3], has developed a number of prototypes
for computerising mathematics. MathLang aims to give alternative techniques
for capturing the mathematical knowledge of a mathematical text in a way that
permits the transformation of this knowledge into new computerised and/or for-
malised versions while accommodating different degrees of formalisation, differ-
ent mathematical editing/checking tools and different proof checkers. We started
from de Bruijn’s Mathematical Vernacular [1] (MV), and Nederpelt’s Weak Type
Theory (WTT) whose proof theory was developed by Kamareddine [7] and were
faced with the huge challenge of how to really create a path from original math-
ematical texts into fully formalised ones and how would this path differ for
different choices of texts, text editors, logical frameworks, and proof checkers.

Extensive computerisations of different mathematical texts (some taken fully
from natural language to different levels of computerisation and finally to full
Mizar), continue to shape the MathLang language. Its expressiveness has been
increased in comparison with MV and WTT. MathLang adopted to decompose
the computerisation process by means of knowledge components called aspects.
In the current development of MathLang we have formalised and implemented
three aspects: CGa and TSa (see below), and DRa (the subject of this article).

The Core Grammatical aspect (CGa) is a formal language derived from
MV and WTT which specifies the grammatical role played by the elements of a
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mathematical text. CGa has a finite set of grammatical categories: Terms, sets,
nouns, adjectives, phrases, statements, declarations and contexts/local-
scoping, definitions, steps, blocks. The MathLang automated type system [6]
checks whether the reasoning parts of a document are coherently built.

The Text and Symbol aspect (TSa) builds the bridge between a mathemat-
ical text and its grammatical interpretation and adjoins to each CGa expression
a string of words and/or symbols which aims to act as its representation. We
added information on how each CGa element should be printed on paper or on
screen. This makes MathLang’s encoding of mathematical texts faithful to tra-
ditional mathematical authoring [5]. TSa adds on top of a mathematical text a
new dimension to the document where colored boxes represent the grammatical
categories of the CGa. We implemented TSa in a plugin for the scientific text
editor TEXmacs (http://www.texmacs.org/).

2 Annotating the Narrative Structure of a Document

This section gives our approach to annotate mathematical documents. The math-
ematical text on the left hand column of Figure 7 is used as our main example.

2.1 What Does the Mathematician Have to Do?

To annotate a mathematical text, the mathematician follows three easy steps:

1. He wraps chunks of text with unique boxes and names each box. Unicity
allows avoiding problems when stating relations between some boxes. For our
example of Figure 7, the names are: S2, D1, D2, T 1, PT 1, T 2, L1, PL1, PT2.

2. He assigns to each (name of a) box, structural or/and mathematical rhetorical
roles which this box may play. He can either use the structural/mathematical
roles listed in Table 1, or specify his own. For our example of Figure 7, we
assigned the roles stated in the left hand column in the table below.

3. He makes explicit the relations between wrapped chunks of texts using the
relation names of Table 1. For our example of Figure 7, the relations are
presented in the right hand side of the table below.

Assigned rhetorical roles Relations

(S2, hasStructuralRhetoricalRole, section)
(D1, hasMathematicalRhetoricalRole, definition)
(D2, hasMathematicalRhetoricalRole, definition)
(T1, hasMathematicalRhetoricalRole, theorem)
(PT1, hasMathematicalRhetoricalRole, proof)
(T2, hasMathematicalRhetoricalRole, theorem)
(L1, hasMathematicalRhetoricalRole, lemma)
(PL1, hasMathematicalRhetoricalRole, proof)
(PT2, hasMathematicalRhetoricalRole, proof)

(PT1, justifies, T1)
(PT2, justifies, T2)
(PL1, justifies, L1)
(PT1, uses, D1)
(PT2, uses, L1)
(PL1, uses, T1)
(PL1, uses, D1)

We use RDF triples
[10] to represent the
relationships between
the boxes annotated
by the mathemati-
cian. Each triple is ex-
pressed by a subject-
predicate-object triple,
where a predicate (i.e., a property) denotes a relationship. The order in a triple
between subject and object is significant, and when transformed into a depen-
dency graph the direction of the arc the triple makes, always points toward the
object.

http://www.texmacs.org/
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2.2 The Annotation System Ontology

Looking at different styles of mathematical knowledge representation we can
distinguish two kinds of document structural units: division elements and math-
ematical units. Division elements express a textual structure (e.g., chapter or
section) of a mathematical text. Mathematical units, are usually expressed in
mathematical textbooks and papers in terms of theorem, lemma or remark.
Some mathematical units, for instance “proof”, are more or less hinted by the
authors’ style of writing (see the example in the introduction). The human reader
is able to recognise and infer them only by looking carefully at the original text.

We express and tag these structural units (division elements and mathematical
units) explicitly. By making explicit annotations of structure units we refine the
content of the already captured original text, and at the same time we give a
wider possibility for (semi)automatic text manipulation (see Sections 3 and 5).

Ontology. An ontology is a representation of terms with their relationships in
a specific domain. An ontology describes: (1) individuals/instances of a class:
the basic objects (e.g., “Bach” is an instance of class “Person” (http://www.
foaf-project.org/); (2) classes/abstract groups: sets, or collections of objects
(e.g., “Person”); (3) relations/propertiesbetweenobjects, e.g., the relation childOf
(http://vocab.org/relationship/) in (“SebastianBach”,childOf,“AmbrosiusBach”).

DRa ontology in a nutshell. To model our DRa ontology we used the OWL-
DL Web Ontology Language, which is the OWL sub-language so-named due to
its correspondence with description logics [11].

Fig. 1. Part of the DRa annotation system ontology

Following OWL, our DRa
ontology makes explicit
the formal description
of classes (whose names
start with capital letter,
e.g., StructuredUnit), in-
dividuals (e.g., section)
and properties/relations
(whose names start with
small letter, e.g., justi-
fies or hasMathematical-
RhetoricalRole) in a do-
main of the DRa.

The DRa concepts are given as three disjoint OWL classes [18] (see Figure 1):
1. StructuredUnit.
2. MathematicalRhetoricalRole whose instances are lemma, proof, etc.
3. StructuralRhetoricalRole whose instances are chapter, section, etc.

Relations between various instances are given as OWL object properties [18]:
1. The ownership relation between structural units and the roles played in a

text, i.e. hasMathematicalRhetoricalRole and hasStructuralRhetoricalRole.
E.g., in Figure 7, (D1, hasMathematicalRhetoricalRole, definition).

http://www.foaf-project.org/
http://www.foaf-project.org/
http://vocab.org/relationship/
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2. The relations between instances of the class StructuredUnit:
(a) relatesTo, justifies, subpartOf, uses, exemplifies, inconsistentWith.

The relations of the first kind (item 1) are modeled as object properties (i.e., link
individuals of one class to individuals of another class). The relations presented
in item (2) are modeled as subproperties of the generic object property – specifies,
i.e. (A, specifies, B), where A, B are instances of class StructuredUnit.

Relations between instances of the classes MathematicalRhetoricalRole or Struc-
turalRhetoricalRole and the XML schema datatype (xsd:string) are given as OWL
datatype properties [18] (i.e., they link individuals of a class to the XML Schema
datatypes [2]):hasOtherMathematicalRhetoricalRoleandhasOtherStructuralRhetor-
icalRole. The existence of these relations gives the freedom if one wants to pro-
vide a new label not appearing in Table 1, this is possible through the usage of
a variant property called hasOtherStructuralRhetoricalRole for division elements
and hasOtherMathematicalRhetoricalRole for mathematical units. The range of val-
ues of such properties is restricted to the XML Schema datatype “string”, e.g.,
(A, hasOtherMathematicalRhetoricalRole, discussion).

Since both division elements and mathematical units express the boundaries
of chunks of text, we included them into one class (StructuredUnit). The two
disjoint classes: StructuralRhetoricalRole and MathematicalRhetoricalRole allow to
represent the different roles played by division elements and mathematical units.

Table 1. DRa annotations
Description

Instances for the hasStructuralRhetoricalRole property:
preamble, part, chapter, section, paragraph, etc.
Instances for the hasMathematicalRhetoricalRole prop-
erty: lemma, corollary, theorem, conjecture, definition, ax-
iom, claim, proposition, assertion, proof, exercise, example,
problem, solution, etc.

Relation
Types of relations: relatesTo, justifies, subpartOf, uses,
exemplifies, inconsistentWith

Instances of the first class are con-
ventional names for division ele-
ments which might at the same
time express the hierarchical level
of a document structure, i.e.,
chapter, section, etc. Instances
of the class MathematicalRhetor-
icalRole are common labels and
names for the mathematical units,
i.e., theorem, corollary, etc. All in-

stances of the classes StructuralRhetoricalRole and MathematicalRhetoricalRole,
are fixed conventional labels used to annotate mathematical documents.

The DRa ontology allows to relate a particular instance of the class Structure-
dUnit with any instance of StructuralRhetoricalRole and MathematicalRhetorical-
Role via the properties hasStructuralRhetoricalRole and hasMathematicalRhetor-
icalRole respectively. We allow the use of both properties when relating to an
instance of a class StructuredUnit. This enables to specify, for instance, that a
chunk of text plays the structural role “section” and concurrently plays the math-
ematical role “theorem”. By stating two properties simultaneously in a document
annotation we allow to encode different styles of writing mathematics.

While annotating the narrative feature of a document, we make explicit cor-
relations between recognised chunks of text. For this, within the DRa ontology,
we introduced other properties which describe relations between instances of
the class StructuredUnit and represent dependencies between mathematical units
and/or division elements. Our DRa ontology clarifies important relationships in
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a text. The properties used to represent relations between chunks of text, have
human readable names: relatesTo, justifies, subpartOf, uses, inconsistentWith, ex-
emplifies. In a formal system, some of these properties have formal meanings:
1. (v1, justifies, v2) – v1 describes a proof object that proves the formula v2.
2. (v1, uses, v2) – (1) All/some variables under the general quantifiers that have

been applied in a formula v2 have been instantiated in formula v1 which could
be proved via simple reasoning where v2 appears among references needed to
prove v1. (2) The formula v2 has been unfolded or folded in the formula v1.

3. (v1, subpartOf, v2) – (1) if v2 is a formula, then v1 is an inseparable part of
that formula; (2) if v2 is a proof object, then v1 is part of that proof object.

4. (v1, inconsistentWith, v2) – if v1 and v2 are proof objects of one formula, then
the environment in which these proof objects were achieved is inconsistent.

3 Automatic Transformation of a DRa Annotated Text

In this section we show how to use the DRa annotated text to automatically cre-
ate a number of views of the text including the dependency graph (that represents
relations between annotated parts of text) and the graph of logical precedences.

G = (V, A, E) where A ⊆ V × (MR ∪ SR), E ⊆ V × Ld × V
V = {v | v = nodeId} – set of vertices
A = {a | a = (v, r) ∧ r ∈ MR ∪ SR ∧ MR ∩ SR = ∅} – set of vertices attributes
E = {e | e = (vsrc, α, vanch ) ∧ vsrc, vanch ∈ V ∧ α ∈ Ld} – set of edges

where
Ld = {relatesTo, justifies, subpartOf, uses, inconsistentWith, exemplifies} – the set of allowed labels in a
dependency graph
MR – the set of MathematicalRhetoricalRoles, cf. Table 1
SR – the set of StructuralRhetoricalRoles, cf. Table 1
nodeId – a unique name/identifier given by the user while wrapping the text with boxes

Fig. 2. Formal presentation of a dependency graph

3.1 The Automatically Generated Dependency Graph of a
Document

A document’s dependency graph is a directed labeled graph with attributes
assigned to the vertices (see Figure 2). The vertices (resp. attributes resp. edges )
of such graph are the names of boxes (resp. mathematical or structural rhetorical
roles resp. relations) specified by the user during the first (resp. second resp.
third) step of the annotation of the document described in Section 2.1.

Figure 3 (and the right hand side of Figure 7) presents the dependency graph
of our particular example. This graph consists of (1) relations between parts of
the text which are represented by visible arrows, and (2) graph nodes which have
specified (but not visible) mathematical or/and structural rhetorical roles. De-
pendencies between the annotated chunks of text play an important role in math-
ematical knowledge representation. Thanks to those dependencies, the reader
finds his own way while reading the text without the need to understand all its
subtleties. Moreover, we will show in the next sections that these dependencies
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Fig. 3. Dependency graph and GoLP.

On the left hand side we have the automatically generated presentation of the
dependency graph constructed from the input of the mathematician in Section 2.1
for our main example of Figure 7. The right hand side of the figure presents auto-
matically generated GoLP from the dependency graph.

allow one to present other views on a document, and to structure the skeleton
of a document in the formal language Mizar. Dependencies graphs (and their
views as in Figure 3) are found automatically from the mathematicians’ input
in Section 2.1.

3.2 Logical Precedences of Mathematical Relations

The annotation identifies and makes explicit different parts of the text, stores
either the mathematical or structural or both roles of each chunk of text, and
annotates the relations between recognised chunks of text (see Section 2.1). The
usage of the DRa system allows us to express relations explicitly in the comput-
erised version of the original text. This explicit representation of relations allows
to build a graph of logical precedences between different chunks of the text.

The logical precedence between two chunks of text indicates the relative
positions of the chunks in a sequence of reasoning steps. These (and other) steps,
contribute to the analysis of the logical correctness of the original text. Logical
precedence is independent of the sequential appearance of the chunks of text in
a document. For instance, in Figure 7, the “Proof” (node PT 1) is stated after
“Theorem 1.19” (node T 1). However, the logical precedence between PT 1 and
T 1 is the other way round (see the direction of the arrow established between
both nodes in Figure 3). In such a case, we say that PT 1 logically precedes T 1.
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Graph transformation

Trans : GDG → G′
GoLP

Trans((v, a, e)) = (v′
, e

′)

(where v′ = Trans
V

(v)

and e′ = Trans
E

(e))

Vertex transformation

Trans
V

: VDG → V ′
GoLP

Trans
V

(v) = v

Edge transformation

Trans
E

: EDG → E′
GoLP

Trans
E

((vsrc, relatesTo, vanch )) = (v
′
src , �, v

′
anch )

Trans
E

((vsrc, justifies, vanch )) = (v′
src ,≺, v

′
anch )

Trans
E

((vsrc, subpartOf, vanch )) = (v′
src ,≺, v

′
anch )

Trans
E

((vsrc, uses, vanch )) = (v′
anch , ≺, v

′
src)

Trans
E

((vsrc , inconsistentWith, vanch )) = (v′
anch , ≺, v

′
src)

Trans
E

((vsrc , exemplifies, vanch )) = (v′
anch , ≺, v

′
src)

(where v′
src = Trans

V
(vsrc) and v′

anch = Trans
V

(vanch ))

Fig. 4. Dependency graph transformation function

We assume two kinds of logical precedences : strong logical precedence ≺ and
not-specified logical precedence �. In Section 2.2 we gave a DRa ontology which
allows specifying the relations between recognised StructuredUnits in a document.
Each such stated relation expresses its own logical precedence (see Figure 4).

3.3 The Automatically Generated Graph of Logical Precedences:
GoLP

Using the logical precedence of each relation (see Figure 4), one can automatically
build for a mathematical text, a graph of logical precedences (GoLP). Figure 3
gives the automatically generated GoLP for our main example. GoLP is a di-
rected graph with labeled edges, achieved by the automatic transformation of
the dependency graph using the transformation function Trans (see Figure 4).
In a GoLP, the direction of an edge together with a label of that edge expresses
the logical precedence corresponding to the relation in a dependency graph from
which the edge (in the GoLP) was achieved. Figure 5 gives the formal definition
of a graph of logical precedences. If G is the dependency graph (DG) and G′ is the
graph of logical precedences (GoLP) shown in Figure 3, using the transformation
function Trans shown in Figure 4, we can automatically transform G into G′.

G′ = (V ′, E′) where E′ ⊆ V ′ × Lp × V ′

V ′ = {v′ | v′ = nodeId} – set of vertices
E′ = {e′ | e′ = (v′

src , α′, v′
anch ) ∧ v′

src, v′
anch ∈ V ′ ∧ α′ ∈ Lp} – set of edges

where Lp = {�,≺} – the set of logical precedences in GoLP

Fig. 5. Formal presentation of a graph of logical precedences (GoLP)
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4 Automatic Analysis of the Dependency Graph and
GoLP

This section explains the checking of the DRa annotation done in two phases:
1. Checking the annotation of distinct roles of recognised fragments of text and

the correct usage of labels and relations.
2. Checking that the logical precedences in the GoLP are self-consistent.

Pre-analysis of the dependency graph. The first phase of checking catches
some inconsistencies while representing the different roles of recognised chunks
of text and the stated dependencies between them. E.g., if two chunks of text
were annotated as “proof” resp. “axiom”, and if a relation justifies is stated
between them (i.e. (proof, justifies, axiom)), the first validation stage returns
two warnings: one on the relation type – which might/should be different, and
another on the role of each chunk of text – which was mistakenly specified.

This checking captures other cases. Assume that one has specified simultane-
ously two MathematicalRhetoricalRoles for a chunk of text, for instance “axiom”
and “proposition”. In such a case the analysis returns a warning stating that
“axiom” cannot be provable, whereas “proposition” can. Similarly, if one simul-
taneously states two different StructuralRhetoricalRoles for one chunk of text (e.g.,
“chapter” and “subsection”), the analysis will return a warning. The difference
between a “chapter” and a “subsection” is that the background knowledge of
a “chapter” is something like an external library for the following sections and
subsections, whereas for “subsection” the context is more specific and composed
of small chunks of text from the previous sections or chapters, although both
“chapter” and “subsection” may use the external knowledge.

Checking the consistency of labels in a GoLP. To allow the analysis of
a GoLP we have identified a number of common relational properties for logical
precedences (see Table 2). These properties are used while checking the labeling
consistency in a GoLP – see the following section.

Table 2. Relational properties of logical precedences

Relational
properties

Not-specified logical precedence Strong logical precedences

C � C′ =⇒ C ≺ C′ ∨ C′ ≺ C
irreflexivity ¬(C � C) ¬(C ≺ C)
symmetry C � C′ =⇒ C′ � C
asymmetry C ≺ C′ =⇒ ¬ (C′ ≺ C)
transitivity A ≺ B ∧ B ≺ C =⇒ A ≺ C

We build a transitive closure of a GoLP (using for example Roy-Warshall’s
algorithm [15,19]) from a dependency graph of the original document. Further-
more we check if such built graph is the graph of a strict partial order (i.e., that
no edge in the transitive closure graph has its reflexive image in the GoLP),
where the strict partial order relation is the strong logical precedence.
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We illustrate the analysis of consistent labeling on the GoLP based on our
example. Take the nodes D1 and PL1, and the edge (D1, α′, PL1), where α′ ∈ Lp

(see Figure 3). In the transitive closure of our GoLP we have two paths that form
the edge (D1, α′, PL1): (1) a direct path πd,α′

D1,PL1 = {(D1,≺, PL1)}, and (2) an

indirect path πind,α′

D1,PL1 = {(D1,≺, PT 1), (PT 1,≺, T 1), (T 1,≺, PL1)}. The direct
path is labeled with a strong logical precedence symbol ≺, denoted as πd,≺

D1,PL1.

When evaluating the label of the indirect path πind,α′

D1,PL1, we have to take into
account the relational properties of the logical precedences of Table 2. In our case,
we use the transitivity of strong logical precedence ≺ between the three edges
of the path πind,α′

D1,PL1. From this, we obtain the labelled indirect path πind,≺
D1,PL1,

which has the same label as the direct path πd,≺
D1,PL1. We conclude that the edge

(D1, α′, PL1) in the graph of logical precedences (GoLP) is labeled consistently.
Labeling consistency validation is performed on each existing edge in the tran-

sitive closure of GoLP built from a dependency graph of the original document.
Once we go through the whole checking of the graph we can say that the GoLP
is valid according to the consistent labeling.

5 From the Document Narrative Structure to the Formal
Document Skeleton in Formal Systems

So far, the mathematician’s DRa annotations of his text in Section 2.1 have
been used to automatically produce the dependency graph and the GoLP of the
text which explicit the narrative, structural and logical features of the text. In
this section, we explain how the automatically generated dependency graph and
GoLP are used for further processing and formalisation of the text. In particular,
we express how the dependency graph together with the GoLP are used to build
a skeleton of a part of a Mizar article – Text-Proper. We do not go into the
technical details. Instead, we present roughly the transformation hints based on
our main example resulting in the Mizar Text-Proper skeleton of Figure 6. For
extensive details on the passage from the dependency graph and the GoLP into
Mizar Text-Proper, Mizar formal proof sketch FPS and full Mizar, see [4].

In Section 2.1, the mathematician specified that a big box named S2 is an
entire section in the document. In Mizar the Text-Proper part of a document
could be divided into a sequence of Sections, where each Section starts with
begin and consists of a sequence of theorems and definitions together with their
proofs. The division of the Text-Proper into Sections has no impact on the cor-
rectness of the Mizar document. Hence, the whole box is indicated to be a section
by explicitly specifying begin at the very top of the right hand side of Figure 6.
It also consists of two lines ::Section and ::Title ... which are treated as
Mizar comments, and are solely oriented for the Mizar user consumption, or the
reader of the Mizar file. Inside ::Title ... it is a good practice (in the Mizar
community) to specify the title of this Section of the Mizar document.

Since the mathematician specified for the box D1 the MathematicalRhetorical-
Role definition, then it is transformed into Mizar syntax as: definition :DEF1:
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S2

D1

D2

T1

PT1

T2

L1

PL1

PT2

uses

uses

justifies

uses

uses

justifies

uses

justifies

begin :: Section
:: Title ...

definition

:DEF1:

end;
definition

:DEF2:

end;

theorem TH1:
proof
...
... by DEF1 ;

...
end;

LEM1:
proof
...
... by DEF1,TH1;
...
end;

theorem TH2:
proof
...
... by LEM1;
...
end;

Fig. 6. Transformation into Mizar skeleton
The left hand side reproduces the dependency graph of our example (Figure 7). On
the right hand side we show the Mizar Text-Proper skeleton of the same example.
The arrows from left to right show how the dependency graph is used to build the
Mizar Text-Proper skeleton. � stands for holes (incomplete proofs).

D1 end; (see Figure 6). In Mizar we introduce the label DEF1 for this definition
to be able to refer to it in further reasoning steps.

Since the mathematician specified for the box T 1 the MathematicalRhetori-
calRole theorem, then it is transformed into Mizar syntax as:
theorem T 1 . Moreover, since the box PT 1 has the MathematicalRhetoricalRole
proof, then we transform it into: proof 1 end;. Moreover, since a block of steps
having the mathematical role proof is related by justifies to a single statement,
we can say that this is a Justification in Mizar, which is transformed into a
specific form. See the corresponding transformation arrows in Figure 6.

In the dependency graph of our main example we also specified that some
blocks of text use other blocks. For instance a block of text named PT 2 uses
statement L1 . Here, we transform PT 2 into a specific Mizar Proof block,
which contains an expression with Straightforward-Justification to statement
L1 , where in Mizar it is reused by referring to a label (i.e., LEM1 ) that was
assigned to a statement L1 during the transformation into the Mizar syntax.

During the transformation of the dependency graph, we use the GoLP of our
main example to be able to put annotated and named chunks of text into a
proper Mizar order inside the Mizar skeleton.

The above transformation process leads to a part of a Mizar Text-Proper
skeleton of a Mizar document (given in Figure 6 for our main example).
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The grammatical information of the original text, which is captured by the
CGa aspect of MathLang and stored in the MathLang document, can be then
used to fill more details in the current skeleton of the Mizar document. This
better filled document could be transformed later into a proper Mizar document.
The work describing these transformation and usage of the MathLang document
for the migration process into the Mizar language, has been described in [4].

6 Related Work, Conclusions and Future Work
Many studies have been carried on the structure of documents. For example,
the Text Encoding Initiative Guidelines (http://www.tei-c.org/) are inter-
national standards that enable the representation of a variety of literary and
linguistic texts. DocBook (http://www.docbook.org), provides a system for
writing a structured document using XML. Another tool is OMDoc ([8] - see
below). These systems allow to separate/divide a document into a number of
structural components (sections or mathematical assertions) which can be an-
notated in the computerised version. Our proposed markup system is simpler
and is concentrated only on the annotation of the narrative structure of math-
ematical documents, whereas others are more oriented towards capturing other
documents subtleties. We believe that separating the concerns during comput-
erisations can play a very helpful role in developing computer tools that can aid
various levels of computerisation/formalisation.

OMDoc vs DRa – A short comparison. OMDoc presents mathematical
knowledge on three levels: the object and formula level, the statement level, and
the theory level. What is made explicit by the DRa markup, is similar to the
statement level and partly to the theory level in the OMDoc system. The OM-
Doc markup distinguishes the knowledge elements of a theory into constitutive
ones like symbols, axioms, and definitions (which present the essence of the anno-
tated theory) and non-constitutive ones such as assertions, their proofs, examples
(which illustrate properties and attributes of mathematical objects determined
by the constitutive statements). This shows a different approach to annotating
the same knowledge. The aim of introducing the DRa is to be able to catch and
store the narrative structure of the text, and simultaneously allow to stay as
close as possible to the original document and the style it was written in. There-
fore, on the DRa markup we do not distinguish constitutive or non-constitutive
statements. We recognize only one class of elements, called StructuredUnit, and
we distinguish the roles they play in mathematical knowledge representation.

Therefore, the purposes/aims of OMDoc and DRa are different. All instances
of the class MathematicalRhetoricalRole in the DRa ontology, are presented as
disjoint classes in the OMDoc ontology [9]. “axiom” is an ontology class in the
OMDoc ontology, whereas in the DRa it is expressed as an instance (individual)
of the class MathematicalRhetoricalRole. This particular name “axiom” expresses
a role of the text labeled by that name, and hence in the DRa ontology we anno-
tate it by stating the property hasMathematicalRhetoricalRole whose range value
is an appropriate instance (i.e., “axiom”) of a class MathematicalRhetoricalRole.

http://www.tei-c.org/
http://www.docbook.org
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<definition xml:id="node -D1.def">
<CMP>A subset A ⊂ R is inductive if [...]

<assertion xml:id="thm -T1" type=" theorem ">
<CMP>Let J be a subset of Z+ [...]

<proof xml:id="proof -PT1" for="#thm -T1">
<CMP>J is inductive so J contains [...]

Both annotation systems
OMDoc and DRa allow to
markup dependencies between
statements. In the OMDoc
file format they are imple-
mented by means of the for
attribute to OMDoc’s elements (e.g., <proof for="#id-of-assertion">). A
possible encoding of a part of our main example shown in Figure 7 in OMDoc
is sketched1 above. Within the DRa system we annotate the relation as an RDF
triple, and it might be expressed in the MathLang internal file using any kind
of XML-RDF recommendations.

The other and main advantage of DRa over OMDoc is a possible analysis of
the dependency graph and the GoLP, which are automatically built from the
performed annotation. This analysis allows to check the annotation of the narra-
tive/rhetorical aspect of a document (see Section 4). Although OMDoc gives a lot
of elements and constructions that can be used to structure mathematical doc-
uments, these allow the user some software compatibility but no validation yet.
The DRa annotation system gives the user a validation tool making it possible
to analyse the well-formedness/encoding of the rhetorical aspect of a document.

Other works. [13,14] present a method to express the logical structure of a
document and hyperlinks between chunks of mathematical text that enhance
the readability of a document and the navigation throughout the text. That
method detects the logical structure of a text and several types of hyperlinks
from printed mathematical documents. Our approach differs in the sense that we
propose an annotation system that allows to express such logical structure and
hyperlinks/relations while authoring a document. Moreover, we use the depen-
dency graph achieved from the annotation to build a formal document skeleton
(as we have done in Mizar and can be done in other systems).

Conclusions. We have presented in this paper our approach to computerise
the narrative aspect of mathematical texts. We built a DRa ontology which
described formally the domain of narrative/structural representations of math-
ematical knowledge in a document. The ontology allows to share a common
understanding of the structure of the represented knowledge among other peo-
ple and software agents. The ontology separates a domain knowledge (DRa) from
the operational knowledge – the actual annotation. By using the ontology we
annotated/marked up our main example shown in Figure 7.

We presented the meaning behind the DRa annotation and gave automated
tools which generate different representations of the document structure. We
showed how the encoded Document Rhetorical aspect annotation could be val-
idated for checking the well-formedness of the annotation. We also expressed
which mistakes made during annotation we are able to automatically catch.

1 For readability and brevity, we show only the opening tag of each XML element for
most elements; we use indentation to express nesting.
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Finally we demonstrated how the dependency graph and the graph of logical
precedences are used to build the skeleton of Mizar Text-Proper.

Future work. The DRa encoding system is a part of the ongoing MathLang
project. As future work, we need to concentrate on the evaluation and improve-
ment of the DRa system, to finish the implementation of the DRa validation
rules and to test them on bigger examples. We also need to work further on the
DRa ontology and to refine the instances of the class StructuralRhetoricalRole.
Namely, we need to separate the depth level of structural units labels from the
actual meaning of a unit. For instance “section” and “subsection”, for the rep-
resentation purposes, differ only in the embedded relation. Therefore we have to
investigate how the depth level can be incorporated within the DRa ontology.

We also need to investigate how a mathematician could add his own intended
relation to the DRa system. For instance, he might want to add the explanationOf
relation which could be used to express that (example, explanationOf, definition).
We have to incorporate this kind of possibilities within the DRa markup system.

Another advantage is that we do not provide yet another concrete syntax for
mathematical encoding. Instead, we incorporate the markup of the narrative
aspect of a mathematical text into the existing encoded document. We believe
that a clear separation between different aspects of mathematical knowledge
and their markup brings a clear guidance for non expert authors. This guidance
mainly helps to extract from the original text, different aspects of mathematical
knowledge at different phases of its computerisation.
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17. Sierpiński, W.: Elementary Theory of Numbers. PWN, Warszawa (1964)
18. Smith, M.K., Welty, Ch., McGuinness, D.L.: OWL Web Ontology Language Guide.

W3C Recommendation (2004)
19. Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf


312 F. Kamareddine et al.

A Original and DRa-Annotated Text of Our Example

2. The integers and real numbers

We shall assume that real numbers R exists with all
the usual properties: (R, +, ·) is a field, (R, +, ·, <)
is an ordered field, (R, <) is a linear continuum
(1.15).
What about Z+?

1.17. Definition.

A subset A ⊂ R is inductive if 1 ∈ A and
a ∈ A =⇒ a + 1 ∈ A

There are inductive subsets of R, for instance R
itself and [1, ∞).

1.18. Definition.

Z+ is the intersection of all inductive subsets of R.

We have that 1 ∈ Z+ and Z+ ⊂ [1, ∞) because
[1, ∞) is inductive so 1 = min Z+ is the smallest
element of Z+.

1.19. Theorem. (Induction Principle)

Let J be a subset of Z+ such that

1 ∈ J and ∀n ∈ Z+ : n ∈ J =⇒ n + 1 ∈ J

Then J = Z+.

Proof.

J is inductive so J contains the smallest induc-
tive set Z+.

�

1.20. Theorem.

Any nonempty subset of Z+ has a smallest element.

Before the proof, we need a lemma.
For each n ∈ Z+, write

Sn = {x ∈ Z+ | x < n}

for the set of positive integers smaller than n (the
section below n). Note that S1 = ∅ and Sn+1 =
Sn ∪ {n}.

1.21. Lemma.

For any n ∈ Z+, any nonempty subset of Sn has a
smallest element.

Proof.

Let J ⊂ Z+ be the set of integers for which
the lemma is true. It is enough (1.19.) to show
that J is inductive. 1 ∈ J for trivial reason that
there are no nonempty subsets of S1 = ∅. Sup-
pose that n ∈ J. Consider a nonempty subset A
of Sn+1. If A consists of n alone, then n=minA
is the smallest element of A. If not, A contains
integers < n, and then min(A∩Sn) is the small-
est element of A. Thus n + 1 ∈ J.

�

Proof of Theorem 1.20.

Let A ⊂ Z+ be any nonempty subset. The in-
tersection A ∩ Sn is nonempty for some n, so it
has a smallest element (1.21.). This is also the
smallest element of A.

�

[...]

2. The integers and real numbers

We shall assume that real numbers R exists with all
the usual properties: (R, +, ·) is a field, (R, +, ·, <)
is an ordered field, (R, <) is a linear continuum
(1.15).
What about Z+?

1.17. Definition.

A subset A ⊂ R is inductive if 1 ∈ A and
a ∈ A =⇒ a + 1 ∈ A

D1

There are inductive subsets of R, for instance R
itself and [1, ∞).

1.18. Definition.

Z+ is the intersection of all inductive subsets of R.D2

We have that 1 ∈ Z+ and Z+ ⊂ [1, ∞) because
[1, ∞) is inductive so 1 = min Z+ is the smallest
element of Z+.

1.19. Theorem. (Induction Principle)

Let J be a subset of Z+ such that

1 ∈ J and ∀n ∈ Z+ : n ∈ J =⇒ n + 1 ∈ J

Then J = Z+.

T1

Proof.

J is inductive so J contains the smallest induc-
tive set Z+. PT1

�

1.20. Theorem.

Any nonempty subset of Z+ has a smallest element.T2

Before the proof, we need a lemma.
For each n ∈ Z+, write

Sn = {x ∈ Z+ | x < n}

for the set of positive integers smaller than n (the
section below n). Note that S1 = ∅ and Sn+1 =
Sn ∪ {n}.

1.21. Lemma.

For any n ∈ Z+, any nonempty subset of Sn has a
smallest element.

L1

Proof.

Let J ⊂ Z+ be the set of integers for which
the lemma is true. It is enough (1.19.) to show
that J is inductive. 1 ∈ J for trivial reason that
there are no nonempty subsets of S1 = ∅. Sup-
pose that n ∈ J. Consider a nonempty subset A
of Sn+1. If A consists of n alone, then n=minA
is the smallest element of A. If not, A contains
integers < n, and then min(A∩Sn) is the small-
est element of A. Thus n + 1 ∈ J.

PL1

�

Proof of Theorem 1.20.

Let A ⊂ Z+ be any nonempty subset. The in-
tersection A ∩ Sn is nonempty for some n, so it
has a smallest element (1.21.). This is also the
smallest element of A.

PT2

�

[...]

S2

uses

uses

justifies

uses

uses

justifies

uses

justifies

Fig. 7. Fragment of text without and with dependency graph
The original text [12, Chapter III, §2] of the given example is taken from
J.M. Moller’s notes [12] regarding general topology and is reproduced on the left
hand side of the figure. The right hand side of the figure shows the automatically
generated dependency graph for the text where relations between parts of the text
are represented by visible arrows and graph nodes have specified (but not visible)
mathematical or structural rhetorical roles.
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Abstract. The interest of the field of Mathematical Knowledge Man-
agement is predicated on the assumption that by investing into markup
or formalization of mathematical knowledge, we can reap benefits in
managing (creating, classifying, reusing, verifying, and finding) math-
ematical theories, statements, and objects. This global value proposi-
tion has been used to motivate the pursuit of technologies that can
add machine support to these knowledge management tasks. But this
(rather naive) technology-centered motivation takes a view merely from
the global (macro) perspective, and almost totally disregards the user’s
point of view and motivations for using it, the local (micro) perspective.

In this paper we go a first step into a more principled analysis of
the MKM value proposition by focusing on motivations for mathemati-
cal search engines from the micro perspective. We will use a table-based
method called the “Added-Value Analysis” (AVA) developed by one of
the authors. Even though we apply the AVA only to mathematical search
engines, the method quickly leads to value considerations that are rele-
vant for the whole field of MKM.

1 Introduction

Mathematical knowledge management (MKM) is a field at the intersection of
document management, knowledge representation, and meta-mathematics. Like
the first (and unlike the third), it is driven by practical motivations, i.e. by
the desire to create technologies that help researchers, scholars, students, and
engineers in dealing with mathematical knowledge.

The field has been inspired by experiences in Formal Methods : formalizing
the intended behavior of programs in logic-based specification languages and
employing semi-automated deduction technologies to verify programs against
these by using formal proofs can indeed lead to safety and security assurances
that are considered so valuable in some high-risk domains that they justify the
extremely high costs involved. However, most applications of mathematics are
less safety-critical, and with peer-review the mathematical community has a
sufficient (much less cost-intensive) instrument for verifying their results. There-
fore, MKM concentrates on management tasks for mathematical knowledge that
involve higher volumes of information, but possibly less formal depth of represen-
tation. The intuition is that mathematical practices like notational adaptation,

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 313–326, 2007.
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document aggregation and translation, semantic search and navigation, classi-
fication of mathematical objects, refactoring of mathematical theories, or error
spotting can be based on lightweight formal annotations and content markup
techniques for mathematics.

In this respect, the MKM approach is similar to the much-hyped Semantic
Web, and suffers from the same problem: before the inference-based techniques
of the field can pay off, a large volume of data (mathematical documents for
MKM and web content for the Semantic Web) must be semantically annotated.
Both fields also agree on how this should be achieved: rather than waiting for
artificial intelligence methods that can automate this, we rely on content au-
thors or volunteers to supply the annotations. Here, we have a very important
difference to the case of Formal Methods, where the connection of the sacrifices
incurred in program verification are directly linked to the expected benefits, usu-
ally a radically reduced risk of liability or reduced insurance payments. In MKM
and the Semantic Web, the benefits lie with the “readers”, while the sacrifices
remain with the “authors” — creating what we call the “authoring dilemma of
MKM” in [KK04] or is referred to as MKM’s “chicken-and-egg problem”1.

In [Koh06a] the authoring dilemma was traced back to differing perspectives
on the problem: the micro perspective, a (local) view from within, and the
macro perspective, a (global) view from without. The direct link between ben-
efits and sacrifices for a user in Formal Methods consists in the alignment of the
micro and macro perspectives, whereas the differentiation between authors and
readers in MKM and Semantic Web is an expression of its drifting apart. From
a macro perspective authors and readers are just roles of a single user, who will
change dynamically between them. In contrast, from the micro perspective of
that user, the benefits lie in the far future. MKM technology like most other de-
signed systems usually takes the macro standpoint and almost totally disregards
the user’s point of view and motivations for using it in the micro perspective.

The MKM community sometimes calls for a “business plan” for MKM, but
to our knowledge it has never seriously been attempted as a business plan must
take the designer’s macro perspective and the users’ micro perspectives into con-
sideration, so that great visionary technology gets actually used. In particular,
we believe that MKM’s value proposition is lop-sided and must be reexamined,
e.g. marketing experts like Normann and Ramirez argue: ”Like a portrait which
over time dictates to those who see it how the person portrayed actually looked,
models also tend to transform what they model, constraining that reality within
the limits of the model’s logic” [NR98, xvi].

In this paper we go a first step into a more principled analysis of the MKM
value proposition. We will use a table-based method called the “Added-Value
Analysis (AVA)” [KM07] developed by one of the authors to investigate
the value constellations (core problems, their solutions, expected benefits,
incurred sacrifices, and added values) that may activate people into users of

1 It is often lamented that MKM technologies will only become useful, once we have
a large corpus of semantically enhanced background material, but we can only real-
istically develop one once we have the MKM technologies.
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mathematical search engines. Our motivation for this is twofold: first, we are
interested in understanding the potential of our own search engine MathWeb-

Searh [KŞ06, KŞ07] more thoroughly and secondly, we want to introduce the
MKM community to the AVA method.

If we want to realize our dream of creating a viable technology and a semantic
resource with universal coverage in mathematics [Far05], then we will have to
convince many authors that there is value for them in doing so.

2 Added-Value Analysis and Easy-to-Fall-For Catches

The “Added-Value Analysis (AVA)” [KM07] was developed as an interaction
design method, that allows and supports a view from micro perspectives, i.e. a
theoretically unlimited number of micro perspectives. It differs from well-known
interaction design methods because of its focus on the “here-and-now” of a user
in the process of using the software.

The micro perspective influences a user’s evaluation of a concrete context and
thereby determines her action. With the Added-Value Analysis this contextual
evaluation process can be (re)constructed. It makes use of the double relativity
of added-values. On the one hand “value” is always relative to the individual
(and not to the object under consideration), on the other hand only if this value
is fixed, we can add more value. This implies that value can be manipulated.
Moreover, we cannot think any longer in simple value chains, but have to consider
rather complex value constellations [NR98], which implies that an object’s value
may change in the process of using it. In particular, there is no such thing like
an added-value per se; its relativities create the basis for understanding taking-
action based on underlying value constellations from a micro perspective.

How to Do an Added-Value Analysis? The starting point for the AVA
is the understanding the term “Added-Value” based on [Grö97]. In particular,
before we can fix the meaning of “Added-Value” of a software package, we
have to state the core problem it tackles. Then we can speak of its (core) value,
by evaluating the core problem with respect to the given solution. Afterwards
— and only afterwards — we can determine how this value can be enhanced by
adding other values. In order to get a handle on a value, the AVA method suggests
to systematically split it into benefits received and sacrifices incurred [dChR00]
according to the core problem with the given solution.

Concretely, we build up a table-like list with the AVA, that contains columns
for the core problem, the considered solution, and its evaluation listed in form
of lists of benefits and sacrifices, see the following table structure:

# Pot Trigger Core Problem Solution Benefits Sacrifices
0 • •

The first step consists in determining the “initial” problem and a solution for
it, then we make state the benefits and/or sacrifices incurred by them. Special
care has to be taken that these benefits/sacrifices are such with respect to the
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core problem and the considered solution. Note that the quality of the AVA
depends strongly on the precision of all formulations. For instance, if a general
problem is addressed with a very specific solution, then a general benefit typically
indicates the inappropriateness of the solution level, whereas a very specific
benefit indicates the inappropriateness of the problem level.

Now, we iterate this step by using either any component of the previous
line or any other association at this level as a trigger for a new core problem. For
example, if a sacrifice is incurred on the user in Step #1, this can be taken as
another core problem for which either a solution exists or is needed. If former,
then we can consider it as added-value, if latter, then it becomes a potential
added-value to the previous problem, which is marked as such in the second
column of the table. If a row is triggered by another row in the AVA table,
we label this process either by color or by a reference. We use both below, in
particular a reader can use a reference like “� 5” to follow the use process
top-down, and the color to follow it bottom-up. Moreover, we explicitly note the
trigger so that the association chain is enhanced and hence not easily broken.
These streams can be reinterpreted as unfolding use processes, in which utility
problems are not present up to a certain depth of already using the software.
Naturally such cognitions can be exploited in interaction as well as interface
design, but this is not the focus of this paper. For convenience, we use the
abbreviation “NN” (“nomen nescio” = ”I don’t know”) to indicate, that we
either couldn’t think of what to write down or that we intentionally do not
follow this line of thought (for now).

Added-Value Analysis’ Related Work. To fortify our intuition of the AVA
method, and especially for its reinterpretation as a value proposition analysis
tool, we will compare it to related interaction design methods first and highlight
its distinguishing features: In 1996 Batya Friedman coined the term “Value-
Sensitive Design” [Fri96] with which human values like “autonomy” reenter in-
teraction design. This concept meant a shift from a technology-centric approach
towards a user-centric one. The AVA incorporates the value-sensitive design
method by looking at the subjective values for the decision-taking for action or
non-action from the micro and not only from the macro perspective. Within the
“Humanistic Research Strategy” [Oul04] human values are considered as well,
but the underlying reasoning for action is restricted to experience and culture,
whereas the AVA takes the processuality of action into account. Again we might
say, that the micro perspective distinguishes both design approaches from the
AVA. Finally, we like to point out that the “Contextual Design” method [BH99]
differs not by objective but by implementation as their method is based on con-
textual inquiry, ours is based on thought trajectories.

With these differentiations in mind, we will look now at possible applications
for the Added-Value Analysis method.

What Is an Added-Value Analysis For? Note that the AVA can be used for
any technology, that involves design and use processes. It is not relevant, whether
the design process is done before the actual use process like in a typical software
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product or during it like writing a diary (in which what is written inspires what
will be written and vice versa). But in the latter the processes are much more
interwoven and therefore, we don’t go into this spider’s nest. In former, we can
distinguish the time-line of a use of AVA from the designer’s standpoint: it can
either be applied in, inbetween, or after the design process as the view of micro
perspectives is helpful in either one.

– When the AVA is used in a software design process, it functions as a system
analysis tool with a focus on the evolving interaction design.

– Within the design process, the AVA helps to find potential added-value ser-
vices and enables the designer to reevaluate the anticipated utility of the
software component in question. As it tends to discover unforeseen user
needs, in this phase, we can consider it as a usability testing tool as well as
a creativity tool .

– If AVA is applied to an already existent product (which we do not consider
extensible for the moment), we can reconstruct its interaction design as well
as evaluating its strengths and weaknesses. If we start with a general initial
problem in a specific field and are informed participants, we can reconstruct
the underlying discourse dynamics and hence its value proposition.

Overall, the Added-Value Analysis modifies the understanding of the processes
that take place when the designed object is actually used. Therefore, we can also
see opportunities for using it from the user’s perspective, for example for a new
manual design or a user’s transparency needs.

But the application of AVA holds some easy-to-fall-for catches, that influence
many designs and which we will try to spell out in the following subsections.

Catch 0: The Quest for Objectivity. We are used to the fact that an analysis
yields objective results. But as the AVA makes heavy use of thought trajectories,
which are of subjective nature, and not “objective” logical deductions, its results
are “valid” with respect to the distinguished worked-out AVA list — which can
hardly be called objective. Contrary to expectations, the wanted “view of micro
perspectives” for a better understanding of the processuality of use actions is
an organized quest for subjectivity (and thereby more often than not exceeding
expectations). In particular, the AVA method cannot be used for an objective
evaluation of a software product but for a systematic exploration of the “subjec-
tive” micro perspectives: it uncovers value constellations; these are values from
a micro perspective.

Catch 1: Knowing the Answer Before the Question. Downsizing from
the macro perspective to the micro perspective is not easily achieved. First,
the setting of the initial core problem is rather difficult, for an example look
at the discussion further below. From a macro perspective we can and actually
frequently start with rather fuzzy problems like “saving the world” with software
“xyz”. Then the list of benefits in the evaluation process is rather awkward like
“xyz makes people happy”. Therefore the hard question is what core problem
that “xyz” might actually solve. Note that most people tend to know the explicit
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answer but not the explicit problem.2 The underlying reason for this difficulty is,
that a user’s value considerations are not distributed any longer over a straight
road, not even a curvy road: it is a value landscape with several dimensions.

Catch 2: Solutions ARE the Benefits. In the process of the AVA, it often
seems as if the solutions are already the benefits: they solve the problem and
that alone feels like a benefit. This is usually a sign that the AVA analyst is not
sufficiently independent from the software author’s motivation (from the macro-
perspective). On the one hand, if the user considers the solution among others
from a micro-perspective, then her evaluation is independent of this perceived
benefit as it doesn’t deliver an advantage over another solution. On the other
hand, if it is the only available solution, then the evaluation isn’t necessary for
taking action.

Catch 3: Problems Are Rhetoric Questions. A similar problem appears
if the core problem is formulated in a way that the solution is not only evident,
but the only reasonable possible solution. In that case, we cannot think of any
benefits or sacrifices as their is no choice, therefore, the AVA would run into a
dead end. Probably though, the problem can be formulated in a more general
way, so the phrasing of the problem should be reconsidered in the AVA; this
alone is an added value of the AVA at the conceptual level.

Catch 4: Values on Too Low Levels The evaluation takes place with respect
to a concrete core problem and one concrete solution for it. Often benefits and
sacrifices from a higher level are still considered on a lower level. Typically this
happens as soon as benefits or sacrifices are repeatedly phrased very similarly in
one process chain. Then the AV analyst better remembers that a user wouldn’t
be at that point (i.e. on that level) if she hadn’t already taken into account
all preliminary values. This exactly forms the specific value constellation from
a micro perspective. Therefore a very precise evaluation is required and in the
AVA the correct level has to be determined for an argument.

Catch 5: The Unfinishedness of AVA. With an AVA one cannot decide
what is right and what is wrong in a design, but rather what its consequences
may be. Each core problem by itself can be considered as a starting point for
another AVA. It is dramatically subjective what the reason for using a software or
not. Therefore, in our experience the AVA always feels unfinished, some termed it
“the AVA infinity”. This is a feature and not a bug of the AVA: if we as designers
know of many of these micro perspectives, we might be able to offer manifold
solutions e.g. by abstracting in the right direction. Moreover, the realization that
the AVA is not a tree, but a graph, enables a complex interplay between several
components.

2 Think of the fame of Douglas Adams’ number 42. This also resonates with the
fact that MKM is a technology-driven community always on the search of a “killer
application” much like a person with a hammer desperately looking for a nail.
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3 Math Web Research: An Added-Value Analysis of
MathWebSearch

In the application of the AVA to the MathWebSearch (MWS) [KŞ06, KŞ07]
system, we started with assuming that the initial problem for search engines
for mathematics is “finding content representations of formulae” (see row 8 in
the table below), and immediately fell victim to a combination of Catch 1 and
Catch 3 mentioned above, i.e. “knowing the answers before the question” and
“problems as rhetoric questions”. In fact, finding formulae is just what a formula
search engine does, and relying on content markup is the specific approach our
system takes. Remember that we are doing this analysis, because we want to get
a view of micro perspectives and not to simply reconfirm our design decisions
so far. Therefore, we have to take the standpoint of a potential user. But which
real user starts with the question “finding content representations of formulae”?
It seems obvious, that such a user is probably a researcher of math web search
in the first place. Hence, this level of argumentation is more at the level of the
introduction of a research paper than it represents a starting point for a value
analysis.

Suspiciously, this initial problem does not even cover competing designs of
mathematical search engines, e.g. [MY03, LM06, MM06]. We interpret this as
a sign, that we started on a rather deep level of the AVA and therefore should
rephrase the initial problem in a much more general way. Hence, when we put
ourselves in the user’s shoes, we realize that we might rather want to find occur-
rences of mathematical objects (irrespective of their representations in mathe-
matical formulae; see row 13, 12, and 5), and what we really want are answers
to “mathematical questions”. Therefore, this is what we will take as the initial
question (row 1) of the AVA in the table below.

# Pot Trigger Core Problem Solution Benefits Sacrifices
1 math questions finding math

answers in
documents

• documents as
reified knowledge
� 3

• standing on the
shoulders of giants

• answer space
restricted to
available
documents

• judging document
credibility � 4

2 — dito — ask experts • get more than you
asked for

• finding people who
know � 20

• get more than you
asked for

3 reified
math
knowledge

kinds of math
knowledge

math practice:
classification
into formulae,
statements,
theories

• provenience of
math assertions

• epistemic status of
document
fragments

• three-level
distinction
enough?� 5

4 P judging
document
credibility

NN • NN • NN

Note in particular, the identification of the underlying initial question allows
us to see design alternatives of our system from a higher-level perspective (e.g.
the MKM one). For instance, if we want answers to mathematical questions,
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we may ask people who know — a time-tried method in mathematics, which
immediately begs the question of how to identify experts.

The other hidden assumption unearthed here, is that MKM search restricts it-
self to search in documents (in the widest sense) as sources for reified knowledge,
and that (of course) we can only find answers in mathematical documents, if they
are machine-readable and accessible to the search engine. Once we have found
a suitable document, we have to analyze the provenience of the information,
i.e. the credibility of a searched document has to be judged. If the documents
discern e.g. the three levels of mathematical practice (formulae, statements, and
theories), that is if they are suitably marked up (e.g. in a document format
like OMDoc [Koh06b] with explicit structural annotations), then the reader can
obtain machine-support in principle. In particular, then we can be interested
in whether a found or looked-for math statement like an assertion is assumed,
conjectured, or proven, and if so, what assumptions the proof is based on, as its
provenience is known as well as the epistemic status of this document fragment.

Now, there are various ways of finding relevant mathematical documents,
including using metadata like the Mathematical Subject Classification (MSC),
by author or keyword search using standard search engines, or (again) by asking
experts (see Catch 5). Here, we will only concentrate on formula search (see row
5), as we use the three-level distinction as a trigger to only look for formulae.

# Pot Trigger Core Problem Solution Benefits Sacrifices
5 three-level

distinction
enough?

finding math
formulae

formula search
engine

• finding references
to formulae

• thinking in
formulae

• crafting queries
� 6, � 7

• no differentiation
between function
and form � 8,� 12

• media change � 7

6 crafting
queries

typing correct
queries

structural
query editor

• GUI-like • restricted query
subset

7 P crafting
queries,
media
change

typing correct
queries

invasive
integration

• no learning curve
• no media change

• development costs

The main hidden assumption uncovered here is that it is a prerequisite of math
search engines that the user has to think in formulae to use them. Obtaining the
formula to search for may be a big part of the problem — indeed we teach this to
our children as “math word problems” or “algebra story problems”. Currently,
the consensus in the MKM field seems to be that the pre-formulaic stage should
not or cannot be supported by our methods.

Now that we have drilled down and motivated formula search as a (derived)
core problem, we can look at the sacrifices incurred: obviously we have to learn
how to craft queries, and we have to decide whether we want to find formulae by
their form or their function. We consider the latter a sacrifice, since it requires
a decision and mental activity by the user and therefore constitutes a hurdle for
using MKM technologies. Furthermore, almost all math search engines require
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a change of medium: they require the user to enter a formula representation
into the input form of a special web page (Mihai Şucan’s browser plugin for
MathWebSearch [Mat07c] being a partial exception). To support the user in
crafting correct queries, we see two alleys, one is supplying a structural input
editor like MathWebSearch [Mat07b] or Mathdex [Mat07a] do, or to inte-
grate the search functionality into the editor that users are familiar with and
use for math document development anyways (see [KK04] for an introduction
to invasive authoring).

The querying problem is much simpler to deal with, if we want to search
formulae by their form since presentation formats for formulae are in much wider
use. Quite generally, there seems to be an equivalence principle between queries
and intended results : We type keywords into Google to find pages containing
these words, and we issue formulae as queries to math search engines. The next
block of the AVA table will be concerned with the problem of finding formulae
by their form:

# Pot Trigger Core Problem Solution Benefits Sacrifices
8 content /

form differ-
entiation

finding formulae
by form

formula
presentation
search engine

• finding formulae by
visual cues

• thinking in formula
layout � 9,� 10

9 thinking in
layout

prioritizing
visual cues
� 11

weighting by
glyph
composition

• higher visual recall
& precision

• assumption:
uniform glyph
meaning

10 P — dito — low
mathematical
recall

semantic
query
expansion

• higher math. recall • assumption:
uniform glyph
meaning

11 P prioritizing
visual cues

low-priority
sub-layouts

glyph
similarity
search

• targeted fuzzy
search

• higher visual recall

• lower mathematical
precision

It turns out that the main sacrifice about finding formulae by their form is,
that we have to think about them by their layout, i.e. we have to know what they
look like, which tends to miss relevant occurrences if we completely specify this.
Therefore, some presentation formula engines offer some ways of broadening the
search by weighting formula parts (which partly recovers a semantical flavor).
We can see this as a measure of prioritizing some visual cues over others, and
we can (potentially) take this to its logical conclusion by deemphasizing some
low-priority parts of the layout to allow for similarity search on these. Further
semantics (i.e. presentation-independence) could be added to search by adapting
a technique from information retrieval: Query expansion adds semantically simi-
lar concepts (e.g. alternative presentations) to a query to obtain better coverage
(see e.g. [QF93] for details).

For the problem of finding formulae by function (finally coming to the ini-
tial starting point of our AVA), we can state the general prerequisite that users
must be able to think about formulae in terms of their function. If they do,
and are able to formulate their problem as an instance problem (this is the
only query type that MathWebSearch can answer, i.e. given a query formula



322 A. Kohlhase and M. Kohlhase

q find an occurrence of a subterm t, such that σ(q) = t for some substitution
σ), then the system can efficiently find formula occurrences, retrieve and display
them. One intended application here is to remember forgotten (i.e. only partially
remembered) formulae [KŞ06] (see also row 14), so MathWebSearch can act
as a memory trigger, leaving the user with the task of judging whether the
formulae returned are adequate. Here, system support is given by displaying the
formula and associated substitutions.

# Pot Trigger Core Problem Solution Benefits Sacrifices
12 content /

form differ-
entiation

finding formulae
by function

formula
content search
engine

• finding formulae
independent of
presentation � 13

• thinking in formula
function

13 finding
formulae
indepen-
dent of
presenta-
tion

finding content
formulae

MWS • finding URL of
OM/MathML
instance

• Retrieve URL

• formulate as
instance problem
� 14

14 formulate
as instance
problem

finding
forgotten
formulae

MWS • memory trigger • judge precision

Another (largely unexplored) application is that we can use instance queries
to find applications of general mathematical results (which can be expressed as
universally quantified formulae): here we can just use the quantifier-free formula
body as a query term (see row 15 and note Catch 2 “benefits are the solutions”).
Similarly, we can find counter-examples by negating the body (see 16 and note
Catch 4 “values on too low levels”). We do not pursue the encountered catches
here, but they imply that there is more work to do. If we apply these two
techniques aggressively (and speculatively) over large bodies of mathematics,
then we can conceivably even extend this to a (weak) form of formula induction,
where we conjecture theorems from known results.

# Pot Trigger Core Problem Solution Benefits Sacrifices
15 P finding

applications
MWS • finding applications • formulate input

(theorem body) as
formula

16 P finding coun-
terexamples

MWS • finding
counterexamples

• formulate input
(theorem body) as
formula, then
negate

17 P formula
induction

• NN • NN

Note that all of these applications rely on MathWebSearch being able to
answer instance queries efficiently, using term indexing techniques developed for
automated deduction. But there are other indexing methods that allow to index
for other kinds of queries: for instance generalization queries. Here, the query
consists of a query formula q, and a generalization search engine, that efficiently
finds occurrences t of subformulae such that σ(t) = q. With this kind of query,
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we can find theorems applicable to a given formula (e.g. when we are stuck in
a proof). Another immediate application is to use this technology to determine
novelty of research results or to settle priority claims.

# Pot Trigger Core Problem Solution Benefits Sacrifices
18 P finding

applicable
theorems

MWS(G) • finding universal
generalization

• document as
context

• creative trigger

• judge context
compatibility

19 P determining
novelty/priority

• NN • NN

We can use (presentation or content) formula search engines to find experts
— a leftover task from the beginning of our AVA, when we were examining
ways to obtain math answers — by their publications. So, if we can find doc-
uments dealing with mathematical objects we are interested in, we can usu-
ally find experts for these by looking up their authors, acknowledgments, or
citations. Finally, we can use formula search engines to search for data: If we
can fit the data (e.g. time series) by closed-form expressions (i.e. formulae),
then we can search them via formula search engines. The advantage here is
that this approach avoids having to develop direct indexing techniques for data,
and we have automatic similarity search via the approximation during formula
fitting.

# Pot Trigger Core Problem Solution Benefits Sacrifices
20 P finding

people
finding people by math

objects in
publications
� 5

• authors are experts • bibliographic
metadata

21 P finding similar
data

finding fitted
formulae

• prescribed • finding fitting
formulae � 22

• loss of precision by
approximation

22 P finding
fitting
formulae

fitting formulae
to data

• NN • NN

4 Conclusion

We have presented the Added-Value Analysis as an associative method for ex-
ploring a user’s value constellations from a micro perspective and applied it
to an emerging subfield of MKM: formula search engines. Even though we ini-
tially applied the AVA to the specific mathematical search engine MathWeb-

Search, the method quickly led to value considerations that are relevant for
the whole field of MKM and to new potential services that could be explored
in the future, e.g. semantic query expansion or a glyph similarity search service
(see rows 10, 11).
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In particular, consider the value propositions of “thinking in formulae” and the
pros and cons for “precision/recall of mathematical queries”. The first indicates
a discrepancy between intuitions about anticipated and intended users for the
math search solutions. On the one hand, formula search engines assume the
user’s capability of thinking in formulae to use them, on the other hand, they
dream of either layman users (that want to pose math questions) or professional
mathematicians. For the first a GUI (row 6) is developed, but for the latter who
typically still prefer pen and paper above editors, OCR methods would be best
as input technology — an opportunity for [SSWX05]?

We were also reminded that math web search — as it is handled now —
requires “formulae competence” as a quality of the user. In particular, a user
gets references as results and has to decide whether the URL is relevant herself.
The underlying assumptions again imply math-knowledgeable users, for instance
mathematicians. One problem might be the above mentioned equivalence prin-
ciple between query and search result: the query has to be made associative,
lightweight, and not verifiable, whereas the search result needs to be trustwor-
thy and verifiable.

Another problem we make out consists in the prediction, that the above an-
ticipations for math web search users indicate, that these users are also the
ones we are aiming for as authors for data in our systems. If we assume that,
then more work has to be done to support such users within their natural
“habitat”, which we believe strengthens our case for semantic, invasive editors
like [Koh05a, Koh05b] or [Koh06c].

Other parts of MKM can also profit from such an analysis, and as the AVA
is subjective in the choices made, even a re-analysis of math search might lead
to additional insights. Note that the AVA does not directly lead to a recipe for
motivating authors to take action and contribute semantically enhanced mate-
rials, but it does help to uncover added-value situations, i.e. such situations in
which users can obtain value without incurring sacrifices additional to those al-
ready amortized by solving their core problem. Such AVA tables not only provide
“cheat sheets” for a real MKM business plan, they enhance added-values that
can help tip the scale towards using them.
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Abstract. Mizar provides built-in support for defining structures (ag-
gregates) like the familiar algebraic systems of groups or vector spaces.
When trying to employ these structures for formalizing graph algorithms
we ran into substantial problems stemming from the fact that fields in
Mizar structures are not first class objects. We decided that a different
approach would be more suitable for the task at hand. Starting from
scratch, we modeled structures as functions. In our approach, fields in
structures are first class objects and just this one factor made working
with graph algorithms much more convenient. We report on our expe-
rience and argue that our approach to aggregates is more suitable for a
proof assistant like Mizar.

1 Introduction

We frequently deal with objects which are composed of a number of other en-
tities. Examples of such cases include the familiar algebraic systems of groups,
rings and vector spaces. All mechanized proof assistants known to us offer some
support for such structuring. E.g. see the treatment of constructive algebraic
hierarchy in Coq[1], the locales of Isabelle[2], a draft comparison of available
modularization tools in several systems[3], or the development of dependently
typed records for logical frameworks [4]. For lack of space, we will not be com-
paring our proposed approach to other systems as we offer a modest solution to
a specific problem at hand. We restrict our attention to some aspects of aggre-
gates in Mizar. These aggregates resemble records from Isabelle/Isar[5]. In
both Mizar structures and Isabelle records, the field names are externalized
and they cannot be accessed as first-class values.

We propose another “implementation” of aggregates in Mizar where fields are
first class objects. This change combined with the machinery of Mizar adjectives
offers substantial convenience in dealing with graph algorithms.

The general syntax of structure definitions is given in Mizar grammar1.
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1 http://mizar.org/language
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struct [ ( Ancestors ) ] Structure-Symbol [ over Loci ] (#
Selector-Symbol -> Type-Expression ,

...
Selector-Symbol -> Type-Expression

#);

Mizar Mathematical Library (mml) contains various structures that are ex-
tensively used in developing abstract algebra. These structures form an inher-
itance hierarchy where e.g. double loop structure (the backbone for rings and
fields) is derived from a multiplicative loop structure with unity and an additive
loop structure with zero. See [6] for some details of Mizar algebraic structures
and the inheritance mechanism. The first exposition of Mizar structures was
given by A. Trybulec in [7].

2 Built-In Structures and Graphs

When starting our work with graph algorithms in 2002 we tried to use whatever
was available about graphs. At that time, mml contained some treatment of
graphs starting with the following structure definition from GRAPH 1[8].

definition

struct MultiGraphStruct (#

Vertices, Edges -> set,

Source, Target -> Function of the Edges, the Vertices

#);

end;

Every structure definition introduces a number of constructors (cf. [7]):

– A structure mode MultiGraphStruct that is used to construct structure types.
A structure type is used to type objects. An object of a structure type is called
a structure. E.g. G introduced in let G be MultiGraphStruct is a structure.

– An aggregating functor MultiGraphStruct(#V, E, S, T#) for constructing ob-
jects of structure types. In this example, both S and T, must be functions
from E to V.

– Four selector functors
• the Vertices of G

• the Edges of G

• the Source of G

• the Target of G

where G must be of type (that widens to) MultiGraphStruct.
The intended meaning of these fields should be obvious from their names.
Functions Source and Target map directed edges to their respective end-
points.

– A forgetful functor the MultiGraphStruct of G where G must be of a type
that widens to MultiGraphStruct.
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– A strict attribute applicable to type MultiGraphStruct such that if G is
a strict MultiGraphStruct then the MultiGraphStruct of G = G. Note that
when we only know that G is a MultiGraphStruct then the above conclusion is
not guaranteed as G can be of some other, wider type than MultiGraphStruct

and have other fields besides the four fields of MultiGraphStruct.

The mode Graph is defined in [8] as a MultiGraphStruct with an additional con-
dition.

mode Graph is Graph-like MultiGraphStruct

where the attribute Graph-like imposes non emptiness of Vertices and was in-
troduced as follows.

let G be MultiGraphStruct;

attr G is Graph-like means :: GRAPH_1:def 1

the Vertices of G is non empty set;

Using the above as a backbone, one can define new modes for structures with
additional fields, for instance, the mode of weighted graphs.

let WL be set;

struct (MultiGraphStruct) WGraphStruct over WL (#

Vertices, Edges -> set,

Source, Target -> Function of the Edges, the Vertices,

Weight -> Function of the Edges, WL

#);

The new mode is prefixed by MultiGraphStruct and inherits all the selectors
of this ancestor. The inherited selectors have to be repeated as their order is
important for the new aggregating functor.

The new mode is parameterized by a set which is intended to be used as the
weight for edges. The parameter is just a set at this stage of defining graphs. The
mode introduces a new selector Weight to be used as the Weight of G whenever
G is a structure whose type is derived from WGraphStruct over some set.

Interested readers should consult A. Trybulec in [7] for some information
about the intended semantics of Mizar structures.

The graphs as defined above have been further developed in the following
mml articles.

– GRAPH 1 [8]: basic definitions for multigraphs.
– GRAPH 2 [9]: vertex sequences of chains.
– GRAPH 3 [10]: Euler circuits and paths.
– GRAPH 4 [11]: essentially a copy of GRAPH 2 for the case of directed graphs.
– GRAPH 5 [12] and GRAPHSP [13]: a rather ad hoc attempt at proving the cor-

rectness of Dijkstra’s algorithm for finding single source shortest path. This
formalization is based on a specific encoding of weighted graphs as sequences.

– MSSCYC 1 [14], MSSCYC 2 [15]: graph terminology is used for properties of many
sorted signatures; nothing interesting about graphs as such.
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Besides the above, there is also an article SGRAPH1 [16] in mml dealing with
simple graphs based on a completely different formalization of basic notions.

In short, in 2002 mml contained only basic facts about graphs. Some defini-
tions turned out to be inconvenient to work with and had to be changed—the
most troubling was the notion of a walk in a graph, originally defined as a
chain of edges in [8]. This notion was replaced by a walk as an alternating fi-
nite sequence of vertices and edges starting with a vertex. As for graphs with
weighted edges, labeled vertices and/or labeled edges, essentially we had to start
from scratch. For a while, we tried reusing whatever was available about graphs
in mml. Unfortunately, this led to some inconveniences when defining new no-
tions (see below). Some of these inconvenient features are well known within the

struct MultiGraphStruct
(# Vertices, Edges -> set,

Source, Target -> Function of the Edges, the Vertices
#);

�����������

struct (MultiGraphStruct)
WGraphStruct over WL

(# ...
Weight ->
Function of the Edges, WL

#);

�

struct (MultiGraphStruct)
EGraphStruct over EL

(# ...
ELabel ->
PartFunc of the Edges, EL

#);

�����������

struct (MultiGraphStruct)
VGraphStruct over VL

(# ...
VLabel ->
PartFunc of the Vertices, VL

#);

�

�����������

struct (WGraphStruct over WL,
EGraphStruct over EL)

WEGraphStruct over WL, EL
(# ...

Weight ->
Function of the Edges,WL

ELabel ->
PartFunc of the Edges, EL

#);

�����������

�����������

struct (WGraphStruct over WL,
VGraphStruct over VL)

WVGraphStruct over WL, VL
(# ...

Weight ->
Function of the Edges, WL

VLabel ->
PartFunc of the Vertices, VL

#);

�

�����������

struct (EGraphStruct over EL,
VGraphStruct over VL)

EVGraphStruct
(# ...

ELabel ->
PartFunc of the Edges, EL

VLabel ->
PartFunc of the Vertices, VL

#);

�

�����������

�����������

struct (WEGraphStruct over WL, EL,
WVGraphStruct over WL, VL,
EVGraphStruct over EL, VL)

WEVGraphStruct over WL, EL, VL
(# Vertices, Edges -> set,

Source, Target -> Function of the Edges, the Vertices,
Weight -> Function of the Edges, WL
ELabel -> (PartFunc of the Edges, EL),
VLabel -> PartFunc of the Vertices, VL

#);

Fig. 1. Possible hierarchy of graph structures. (Note that the ... serve as space savers
in this figure. In structure definitions, Mizar requires listing all the fields of each
prefixing structure. In order to save space we use ... instead of repeating the four
fields of MultiGraphStruct.)
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Mizar community, e.g. defining functors with arguments of a structure type or
returning a structure type, see Section 3.

We would like to note that when dealing with graph algorithms, we frequently
needed to perform operations on graphs (i.e. structures) that are rarely per-
formed on the familiar algebraic structures. While it happens, defining a new
ring by adding an element to the carrier of an existing ring is not a frequent oper-
ation. Similarly, one infrequently updates the values of fields in a group. However,
update operations on a graph structure are essential in graph algorithms, as at
each step of such an algorithm, a graph is transformed into another graph.

We attempted to use the currently available Mizar structures for our needs.
The starting point was the above mentioned MultiGraphStruct from which we
derived 7 additional graph structures as shown in Figure 1. In order to deal with
graph algorithms on weighted graphs, we added three extra fields: weights on
edges, labels on vertices, and labels on edges.

3 Two Difficulties

Once the graph structures are defined as above, we need to define a number of
functions and modes (type constructors) involving them. This leads to a number
of complications. We illustrate them on two examples.

1. Defining a function for labeling vertices.
2. Extending the concept of subgraph to weighted graphs.

3.1 Trouble with Labeling Vertices

When dealing with graph algorithms, it is handy to introduce a collection of
helper functions which return graphs, for example a function which labels a given
vertex by a given value. In order to guarantee uniqueness, any function returning
a structure must return a special, exact form of the structure, expressible by the
built-in attribute strict. This attribute says that only the specified set of fields
is present in the structure. One would expect that one can prove equality of A
and B of a structure type S by proving that A and B are equal on S’s fields.
However, this may succeed only when both A and B are typed as strict S.

An object typed as strict MultiGraphStruct is a structure with only the
Vertices, Edges, Source, and Target fields; no other fields are in this structure.
The type strict MultiGraphStruct cannot be used for objects whose declared
type is derived through prefixing from MultiGraphStruct as such an object has
other fields; however, such an object is a MultiGraphStruct. When we have an
object of type MultiGraphStruct, without knowing whether it is strict, then we
do not know whether there are any other fields in the object besides the origi-
nal four: Vertices, Edges, Source, and Target. Any object whose type widens to
MultiGraphStruct can always be considered as a MultiGraphStruct despite having
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additional fields. However, Mizar offers no tools for proving that an object of a
structure type is strict unless the object has been introduced as such.

Let us have a look at the following functor, intended to take a vertex labeled
graph G and relabel vertex v by x.

definition let G be VGraph, v be Vertex of G, x be set;

func G.labelVertex(v,x) -> strict VGraph means

(the MultiGraphStruct of it) = (the MultiGraphStruct of G) &

(the VLabel of it) = (the VLabel of G) +* (v .--> x);

The defined function is named .labelVertex, to be used in infix notation with
one left argument and two right ones. The function accepts as its left argument
any structure derived from VGraph, e.g. WVGraph. However, the return type of
this function is strict VGraph. Thus if the left argument of this function is a
WVGraph then the weight information is not “preserved” in the result as only a
strict VGraph is returned.

When labeling a vertex in a graph we do not affect any other fields besides
VLabel of the graph. Unfortunately, Mizar does not allow this to be expressed
easily as field selectors are not first class objects and we cannot quantify over
them. Therefore we cannot say directly that all fields other than VLabel have
not been changed.

There are several ways to work around this. We could introduce separate
labeling functions, which return different types. For example, for WVGraph which
is the type of weighted and labeled graphs we can define the following function.

definition let G be WVGraph, v be Vertex of G, x be set;

func G.labelVertex(v,x) -> strict WVGraph means

(the WGraphStruct of it) = (the WGraphStruct of G) &

(the VLabel of it) = (the VLabel of G) +* (v .--> x);

Unfortunately, this means that we may need to define many such functions, one
for each combination of features we would like to see in a graph. The number of
such functions grows linearly with the number of structures we derive, and the
latter can grow exponentially with the number of features that we introduce. Add
in the customary theorems for each function, and the amount of work required
to maintain such a library of helper functions may become immense. Moreover,
due to different return types of these functions we would have to maintain quite
a number of similar theorems for each of these functions.

There is another solution to reclaiming the information lost when using the
original .labelVertex function. One can introduce more helper functions which
copy fields from one structure to another as in this example.

definition let G be VGraph, G2 be WGraph;

assume the Edges of G = the Edges of G2;

func G.copyWeight_WV(G2) -> strict WVGraph means

the VGraphStruct of it = the VGraphStruct of G &

the Weight of it = the Weight of G2;

correctness @proof end;

end;



Alternative Aggregates in Mizar 333

We could then compose the two functions

G.labelVertex(v,x).copyWeight_WV(G)

to get the WVGraph that we intended. This is somewhat better than the previous
approach, but we still need various versions of copy functions in order to deal
with all the different types of graphs we would like to consider.

Both these approaches require a lot of extra function definitions which are
essentially identical. Ideally, we would like to have a function that takes in some
type of a graph, modifies a vertex label, and returns the same type of graph. The
function should only modify the vertex labels, and leave all other fields of the
“output” graph the same as in the “input” graph. Unfortunately, there simply
is no way to specify such a function using Mizar’s built-in structures.

One could consider overcoming this problem by defining all such functions just
on the WEVGraph. In doing so we would just postpone the problem as any future
prefixing with WEVGraph would bring all the inconveniences back to the surface.
In addition, methodologically it seems desirable that when defining functions

– types of arguments are as wide as possible (and not as narrow as convenient);
– return type is as narrow as possible.

3.2 Trouble with Subgraphs

The notion of subgraph is defined in GRAPH 1[8] as follows.

definition let G be Graph;

mode Subgraph of G -> Graph means :: GRAPH_1:def 17

the Vertices of it c= the Vertices of G &

the Edges of it c= the Edges of G &

for v st v in the Edges of it

holds (the Source of it).v = (the Source of G).v &

(the Target of it).v = (the Target of G).v &

(the Source of G).v in the Vertices of it &

(the Target of G).v in the Vertices of it;

end;

We needed to define the concept of a weighted subgraph in order to talk about
a shortest-path subtree when formalizing the Dijkstra shortest-path algorithm.
The definition of a weighted subgraph, WSubgraph, could be as follows.

definition let G be WGraph;

mode WSubgraph of G -> WGraph means

it is Subgraph of G &

the Weight of it = the Weight of G | the Edges of it

end;

(The binary operator | is a restriction on domain of a relation.) A WSubgraph

is clearly a subgraph. However, in the definition we give its mother type as
WGraph in order to access the Weight selector in the definiens. With this definition



334 G. Lee and P. Rudnicki

Mizar automatically processes a WSubgraph as a WGraph but Mizar does not
“automatically” know that it is also a subgraph of G. This is unsatisfactory as
then the machinery developed for subgraphs is not available directly; we have
to access the machinery by hand. As an example, let us look at the attribute
spanning applicable to subgraphs.

definition let G be Graph, G2 be Subgraph of G;

attr G2 is spanning means

the Vertices of G2 = the Vertices of G;

end;

If we have an object w of type WSubgraph of G, we cannot directly say that

w is spanning

as WSubgraph of G is not automatically perceived as a Subgraph of G. We can
achieve the desired effect but we must use an additional object in order to cast
the type.

for w1 being Subgraph of G st w = w1 holds w1 is spanning

This type casting is necessary as Mizar does not see two types of an object
simultaneously if one of the types is not derived from the other.

Although none of the above obstacles was fatal, they seemed inconvenient
enough that we decided to pursue an alternative treatment of graphs in Mizar.
(Moreover, besides a handful of rudimentary definitions, there was not much
material on graphs in mml that we could use when formalizing graph algorithms.)

4 New Implementation of Aggregates

The underlying idea behind our alternate approach to aggregate objects is to
have selectors as first class objects and thus to resign completely from using the
built-in structures. The Mizar machinery of attributes (adjective constructors)
plays a central role in our approach. Instead of fixing which collection of fields
is part of an aggregate, we define what it means for an object to have some
particular field. For example, a graph having some associated weight function
would have the attribute [Weighted], while a graph having labeled vertices would
have the attribute [VLabeled].

We define a GraphStruct2 as a finite function whose domain is a subset of
natural numbers.

definition

mode GraphStruct -> finite Function means :: GLIB_000:def 1

dom it c= NAT;

end;

2 The name GraphStruct is probably quite misleading at this point, something like
Struct would be much better. However, in our experiment we were interested in
talking about graphs and not about structures in general.
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Although we could have used any fixed set as the domain above, choosing natural
numbers seemed more convenient than others. The elements of the domain of
GraphStruct play the role of selectors for fields.3 In the next step, for each selector
we are interested in, a functor is defined that returns a unique natural number:

definition

func VertexSelector -> Nat equals 1;

func EdgeSelector -> Nat equals 2;

func SourceSelector -> Nat equals 3;

func TargetSelector -> Nat equals 4;

func WeightSelector -> Nat equals 5;

func ELabelSelector -> Nat equals 6;

func VLabelSelector -> Nat equals 7;

end;

For each selector, we introduce another functor that looks similar to a selector
reference used in Mizar’s built-in structures. (We do not have to do this at all
but in 2003 it looked like a good idea.)

definition let G be GraphStruct;

func the_Vertices_of G equals G.VertexSelector;

func the_Edges_of G equals G.EdgeSelector;

func the_Source_of G equals G.SourceSelector;

func the_Target_of G equals G.TargetSelector;

end;

Now we are in a position to define an attribute that states which properties of
a bare-bones GraphStruct make it graph-like. Note that the graph-like attribute
expresses properties that earlier were expressible through construction; see the
definition of MultiGraphStruct above.

definition let G be GraphStruct;

attr G is [Graph-like] means :: GLIB_000:def 11

VertexSelector in dom G & EdgeSelector in dom G &

SourceSelector in dom G & TargetSelector in dom G &

the_Vertices_of G is non empty set &

the_Source_of G is Function of the_Edges_of G, the_Vertices_of G &

the_Target_of G is Function of the_Edges_of G, the_Vertices_of G;

end;

We define attributes for stating the presence of other fields in a graph.

definition let G be GraphStruct;

attr G is [Weighted] means :: GLIB_003:def 4

3 A. Trybulec maintains that structure selectors should be a resource that is controlled
by the Mizar processor. Such an approach would avoid possible future conflicts.
However, we have conducted the experiment with formalizing graph algorithms with-
out any change of the Mizar software. The user is entirely responsible for defining
and using selectors. A careless user can repeat the natural value given to a selector.
We do not see any danger in this while serious inconvenience is certainly possible.
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WeightSelector in dom G &

G.WeightSelector is ManySortedSet of the_Edges_of G;

attr G is [ELabeled] means :: GLIB_003:def 5

ELabelSelector in dom G &

ex f being Function

st G.ELabelSelector = f & dom f c= the_Edges_of G;

attr G is [VLabeled] means :: GLIB_003:def 6

VLabelSelector in dom G &

ex f being Function

st G.VLabelSelector = f & dom f c= the_Vertices_of G;

end;

With the the built-in Mizar structures, we were constructing new structure
modes with struct · · · (# · · · #) and the construction relieved us from proving
the existence of objects of the newly defined types. With our approach, we have
to prove the existence of GraphStructs with specific properties. With the three
additional fields besides the backbone fields of each graph, we have 8 different
kinds of graphs we could possibly deal with. The good news is that we can do
this in one single shot by proving the following existential cluster.

registration

cluster [Graph-like] [Weighted] [ELabeled] [VLabeled] GraphStruct;

existence proof ... end;

end;

After demonstration that such compound objects exist, we assign individual
modes for each subset of features.

definition

mode _Graph is [Graph-like] GraphStruct;

end;

definition

mode WGraph is [Weighted] _Graph;

mode EGraph is [ELabeled] _Graph;

mode VGraph is [VLabeled] _Graph;

mode WEGraph is [Weighted] [ELabeled] _Graph;

mode WVGraph is [Weighted] [VLabeled] _Graph;

mode EVGraph is [ELabeled] [VLabeled] _Graph;

mode WEVGraph is [Weighted] [ELabeled] [VLabeled] _Graph;

end;

Thanks to the Mizar attribute system, we get automatic inheritance. For ex-
ample, Mizar automatically knows that a WEVGraph is a WGraph, a VGraph and
even a EVGraph, without us having to prove anything.

A feature found in the Mizar implementation of structures that we have to
emulate by hand is the previously automatic typing of selectors. For example,
in MultiGraphStruct, Mizar understands that the Source is a function from the
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Edges to the Vertices. In the new approach, we can get the same by redefining
the new “selectors” for various types of arguments in which we make their return
more specific.

definition let G be _Graph;

redefine func the_Vertices_of G -> non empty set;

redefine func the_Source_of G ->

Function of the_Edges_of G, the_Vertices_of G;

redefine func the_Target_of G ->

Function of the_Edges_of G, the_Vertices_of G;

end;

5 Overcoming the Difficulties

With our approach we have more control over the fields and we can better address
the two limitations we mentioned in Section 3. In the solution, we heavily rely
on attributes, i.e. adjective constructors.

Given a selector, we can now easily modify the field associated with that par-
ticular selector using the general machinery developed for functions. A functor
that accomplishes this task might be as follows.

definition let G be GraphStruct, n be Nat, x be set;

func G.set(n,x) -> GraphStruct equals :: GLIB_000:def 13

G +* (n .--> x);

end;

where n is a selector. (G +* (n .--> x) is Mizar lingo, one of many already
available, for overwriting G at n by x.)

5.1 Another Way of Labeling Vertices

With the above in hand, we define the primitive graph helper functor for labeling
a vertex.

definition let G be VGraph, v,x be set;

func G.labelVertex(v,x) -> VGraph equals :: GLIB_003:def 22

G.set(VLabelSelector, the_VLabel_of G +* (v.-->x)) if

v in the_Vertices_of G otherwise G;

If we try to label a WVGraph, the weight information gets preserved. Nonetheless,
Mizar doesn’t recognize this automatically and sees the result as only a VGraph.
However, since the presence of weight is expressed by an attribute, we can add
the missing information using functorial clusters, for a complete set of such
clusters see [17].

registration let G be WVGraph, v,x be set;

cluster G.labelVertex(v,x) -> [Weighted];

end;
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registration let G be EVGraph, v,x be set;

cluster G.labelVertex(v,x) -> [ELabeled];

end;

The new labeling functor is much more convenient to use. With Mizar’s built-
in treatment of structures, we would have needed many different functions, but
with our implementation, we only need one, along with a collection of functorial
clusters, one per field. However, we still have to prove several simple theorems
stating which selectors have not been affected by the labeling function.

theorem :: GLIB_003:46

for G being WVGraph, v,x being set holds

the_Weight_of G = the_Weight_of G.labelVertex(v,x);

theorem :: GLIB_003:47

for G being EVGraph, v,x being set holds

the_ELabel_of G = the_ELabel_of G.labelVertex(v,x);

Since we have only one function of updating vertex labels, the number of such
theorems will be linear in the number of fields.

5.2 Alternate Subgraphs

A subgraph is now defined as follows.

definition let G be _Graph;

mode Subgraph of G -> _Graph means :: GLIB_000:def 29

the_Vertices_of it c= the_Vertices_of G &

the_Edges_of it c= the_Edges_of G &

for e being set st e in the_Edges_of it holds

(the_Source_of it).e = (the_Source_of G).e &

(the_Target_of it).e = (the_Target_of G).e;

end;

Since now the property of having a weight field is an attribute of GraphStruct,
we can talk about subgraphs that are weighted, namely [Weighted] Subgraph of

G. This is not the same as a WSubgraph in Section 3.2, because the fact that a
subgraph of G is weighted does not say that the weights are inherited from G.
What we need is another attribute which states this inheritance.

definition let G be WGraph, G2 be [Weighted] Subgraph of G;

attr G2 is weight-inheriting means :: GLIB_003:def 10

the_Weight_of G2 = (the_Weight_of G) | the_Edges_of G2;

end;

The mode WSubgraph, analogous to the one with which we had later troubles in
Section 3.2 now becomes as follows.

definition let G be WGraph;

mode WSubgraph of G is weight-inheriting ([Weighted] Subgraph of G);

end;
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Once again, thanks to the Mizar attribute system, Mizar automatically un-
derstands that a WSubgraph of G is a Subgraph of G, yet also a WGraph because it
is both [Weighted] and a Graph.

Thus, when we deal with a G being a finite real-weighted WGraph and a w

being finite real-weighted WSubgraph of G we can write both w is spanning

and say that w.cost() <= G.cost(). The .cost functor is defined as follows.

definition let G be finite real-weighted WGraph;

func G.cost() -> Real equals :: GLIB_004:def 11

Sum the_Weight_of G;

end;

5.3 Expressing Strictness

Mizar allows one to extract a strict part out of a structure. For example, for an
object G of type WVGraphStruct, we can talk about the WGraphStruct of G which
gives us a strict WGraphStruct part of G. With our attribute approach, we can
get an analogous effect by restricting the selector set of a graph with a function
like this.

definition let G be GraphStruct, X be set;

func G.strict(X) -> GraphStruct equals :: GLIB_000:def 14

G | X;

end;

As in the case of labeling a vertex, we use functorial clusters to show which
features are carried over for a specific argument X.

definition

func WGraphSelectors -> non empty finite Subset of NAT equals

:: GLIB_004:def 9

{VertexSelector, EdgeSelector, SourceSelector, TargetSelector,

WeightSelector};

end;

registration let G be WGraph;

cluster G.| WGraphSelectors -> [Graph-like] [Weighted];

end;

We found it necessary to use this version of strict graph aggregates when defining
the set of minimum cost spanning trees for a weighted graph in [18].

6 Final Remarks

The alternative treatment of graphs has been implemented in Mizar articles
[19,20,21,17] by the first author as a part of his MSc thesis, see [22], under
supervision of the second author. Then we proved the correctness of the following
algorithms.
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– Dijkstra’s single source shortest path in [18],
– Prim’s minimum spanning tree in [18],
– Ford/Fulkerson’s maximum network flow algorithm in [23].

All algorithms are proved correct at the level of graph “operations”; we did not
venture into formal treatment of implementing priority queues or other data
structures.

Following the above work, Broderick Arneson [24] has formalized two al-
gorithms for recognizing chordal graphs from [25] and [26]. These algorithms
employ quite complicated labeling of vertices; the formalization is contained
in [27] and [28].

In our dealing with graphs, getting past the limitations of built-in Mizar

structures when working with update functions and subgraphs was of paramount
importance. We feel that our implementation of aggregates, heavily relying on
the Mizar attributes machinery, has preserved all the benefits of the current
Mizar implementation of structures, yet has given us the extra flexibility to
address many issues that we faced. We discussed this alternative implementation
of aggregates with Grzegorz Bancerek in mid 1990s; the idea waited for 10 years
to be implemented. Now we are considering a design of a systematic way for
converting the old style Mizar structures into the new implementation.

We thank one of the reviewers for valuable comments and suggestions.
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Abstract. This article describes an approach to searching for mathe-
matical notation. The approach aims at a search system that can be
effectively and economically deployed, and that produces good results
with a large portion of the mathematical content freely available on the
World Wide Web today. The basic concept is to linearize mathematical
notation as a sequence of text tokens, which are then indexed by a tra-
ditional text search engine. However, naive generalization of the ”phrase
query” of text search to mathematical expressions performs poorly. For
adequate precision and recall in the mathematical context, more complex
combinations of atomic queries are required. Our approach is to query for
a weighted collection of significant subexpressions, where weights depend
on expression complexity, nesting depth, expression length, and special
boosting of well-known expressions.

To make this approach perform well with the technical content that
is readily obtainable on the World Wide Web, either directly or through
conversion, it is necessary to extensively normalize mathematical expres-
sion data to eliminate accidently or irrelevant encoding differences. To do
this, a multi-pass normalization process is applied. In successive stages,
MathML and XML errors are corrected, character data is canonicalized,
white space and other insignificant data is removed, and heuristics are ap-
plied to disambiguated expressions. Following these preliminary stages,
the MathML tree structure is canonicalized via an augmented precedence
parsing step. Finally, mathematical synonyms and some variable names
are canonicalized.

1 Introduction

This article describes an approach to searching for mathematical notation. The
approach aims at a search system that can be effectively and economically de-
ployed, and that produces good results with a large portion of the mathematical
content freely available on the World Wide Web today. We have implemented
this approach in the Mathdex [10] search service and web site.

Our approach follows the general model for mathematical search developed by
Yousef [12]. The basic concept is to linearize mathematical notation as a sequence
of text tokens, which are then indexed by a traditional text search engine. The
text search engine performs atomic queries for terms in the usual way, computing
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rankings for documents using a standard vector space model based on term
frequencies and inverse document frequencies. Conceptually, a query for a more
complex mathematical expression then becomes roughly analogous to a phrase
query, where the text notion of phrase has somehow been suitably adapted to
mathematics.

Apart from the algorithmic problem of devising query types and ranking meth-
ods suitable for mathematics from the building blocks of atomic term queries,
there is the practical challenge of applying the approach to the technical content
actually available on the Web. Text is relatively straightforward to identify and
extract in most document formats, and to normalize for searching purposes (via
stemming, etc.) By contrast, mathematics is often hard to identify and extract,
and is encoded in many different ways, both at the level of markup and notation.

To address this problem, the strategy we have employed is to convert all con-
tent to a common format, XHTML+MathML, again leveraging existing third-
party tools whenever possible. We then employ a multi-pass normalization algo-
rithm that attempts to produce a canonical MathML representation for equiva-
lent mathematical notations. By notational equivalence of expressions, we mean
that a typical user looking at them would judge them to be the same mathe-
matical notation. For example, expressions that differ trivially in spacing or that
have markup differences that make no visual difference to the typeset appearance
should share the same canonical representation.

There are several advantages of this general approach. A key practical advan-
tage is that it leverages the very considerable amount of effort that has gone into
developing effective, highly optimized text search systems and conversion tools.
In our case, we have chosen to use the Apache Lucene [1] text search engine
and Apache Nutch [2] web crawler, together with a variety of existing tools for
conversion to MathML, particularly blahtex [11] and LaTeXML [13].

At a more theoretical level, by favoring notational similarity over mathemati-
cal similarity, we believe this approach offers users simpler, more familiar query
formulation. This also works well with a much larger class of documents, since
in most cases, sufficiently detailed semantics for mathematical manipulation are
not adequately specified, and cannot today be inferred programmatically with
sufficient reliability. At the same time, in many contexts where mathematical
semantics are available, the appeal and promise of semantic search is great. In
particular, see [3], [4], [5], [6], and [7] for current work in this area. The search
system for Wolfram Research’s Functions [17] web site is also an interesting
approach to semantic search.

This work is supported in part by the National Science Foundation through
the National Science Digital Library program under grant number 0333645.

2 Query Formulation

2.1 Mathematical N-Grams

Users want to formulate short queries, and obtain complete answers. Unfortu-
nately, short queries are generally ambiguous in capturing the user’s information
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need. This fundamental dynamic of information retrieval is magnified in the con-
text of mathematical search. When a user forms a text query by giving one or
two keywords, it is likely that the keywords will appear literally in relevant doc-
uments. By contrast, when a mathematical expression is given as a query, it is
likely that most relevant documents will not literally contain the query expres-
sion, but will instead contain expressions that merely share one or more common
sub-expressions with query expression. For example, a user querying for x + y
may want to match y +x and x+2+ y with a certain degree of relevance. Thus,
the paramount challenge of mathematical search is to identify relevant results
by finding expressions that are similar to a query expression while differing in
variable names, order and structure in potentially non-trivial ways.

In text retrieval systems, character-based n-grams are effectively used to over-
come difficulties such as misspellings and multiple tenses. Instead of indexing
individual words, n-grams, (sequences of n consecutive characters appearing in
a word) are indexed. At a higher structural level, indexing word-based n-grams
(sequences of n consecutive words in a document) is more efficient and effective
than searching for literal phrase matches. At both levels, focusing on n-grams
instead of literal matches gives a natural and effective way of identifying words
and phrases that are similar to a query based on the degree of overlap in the
constituent n-grams.

Working by analogy, an obvious approach to quantifying similarity to a math-
ematical query expression is to build an index of ”mathematical n-grams.” A
mathematical n-gram will consist of a sequence of n consecutive building blocks
of some sort, but these building blocks could range from entire expressions, at
one end of the spectrum, to individual symbols and characters at the other end
of the spectrum, depending on the granularity of the information desired.

We chose to use atomic mathematical notations as the basic unit for math-
ematical n-grams. These mathematical n-grams range from a single variable to
short sub-expressions. For us atomic notations have a one-to-one correspondence
with a node or set of adjacent nodes belonging to the same parent in the pre-
sentation MathML representation of an expression. This approach constructs
mathematical n-grams with retrieval characteristics similar to the text n-grams
while still preserving meaningful mathematical structure [14].

The length of an n-gram is defined recursively. All MathML token nodes are
considered to be 1-grams. The length of a non-token MathML node is defined
as the sum of the lengths of its child nodes, omitting a short list of <mo> nodes
containing common operators, such as +,− and invisible times. This is analogous
to ignoring stop words like “he” “is”, “and,” etc., in text search retrieval. Also,
n-grams starting or ending with these stop word operators, as in +z or 2y+, are
not indexed or searched. These operators appear only inside higher n-grams, to
give importance to exact matches. Currently, we only consider n-grams of length
up to 5.

N-grams are categorized by notational role, which is typically identified by the
parent element of the nodes included in the n-gram. Each category of n-gram
is indexed separately. Following Lucene terminology, these categories are called
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fields in the index. Consider some examples. In the MathML expression, <msup>
<mi>x</mi> <mn>2</mn> </msup>, the <mn> node is placed in the “superscript”
field. In the expression <mfrac><mi>x</mi><mi>y</mi><mfrac>, both the x and
y nodes belong to parent element <mfrac>, but in this case, finer control over
the notation role is desirable. So here, the first child x is indexed in the “numer-
ator” field whereas y is indexed in the “denominator” filed. Similarly in <mroot>
<mi>x</mi> <mi>y</mi> </mroot>, x is indexed as “base” and y as “root”.

For an example of mathematical n-gram construction, consider the expression

x2

2y + z

encoded in presentation MathML as:

<math>
<mfrac>

<msup> <mi>x</mi> <mn>2</mn> </msup>
<mrow>

<mrow> <mn>2</mn> <mo> &it; </mo> <mi>y</mi> </mrow>
<mo>+</mo>
<mi>z</mi>

</mrow>
</mfrac>

</math>

Here, the n-grams structure is:

1 grams: x, 2, 2, Invisible Times, y, +, z
2 grams: x2 , 2y
3 grams: 2y + z
4 grams: none
5 grams: x2

2y+z

The search space is divided into fields to increase the precision of query match-
ing. During query time, the query expression is broken down into n-grams. The
index is then searched for each n-gram, both in its own primary field, as well
as other extended fields, which are mathematically meaningful in that query
context. For example, matches in the “nth root” field of the index for a query
sub-expression in the “square root” field have a high likelihood of being rele-
vant, where as matches in the “denominator” field of the index are less likely to
be relevant. Note that n-grams are only indexed in their own primary fields to
accurately represent the information in the document. Limiting indexing to the
primary field helps retrieve documents with high precision whereas querying on
both primary and extended fields helps retrieve documents similar to the query
thus increasing the recall.

The weighting for a match in an extended field is derived from the weight of
the primary field. This weight is proportional to an informal notion of structural



346 R. Miner and R. Munavalli

similarity between the fields. We have precompiled a matrix of similarity values
between different fields that are used to assign weights for the extended fields. As
will be discussed below, query terms must exceed a threshold query weight to be
considered, and hence extended fields with very low similarity and significance
to the entire query sub-expression will be automatically dropped.

2.2 Term Level Query Formulation

Naively searching for all constituent n-grams in a query expression would not
only slow down the overall search speed but also retrieve a huge number of non-
relevant documents. Merely because a query expression contains x as a 1-gram
does not mean that any document containing an x is relevant. To address this
problem, it is desirable to choose a small subset of the potential query terms.
During the query tree construction, each node in the tree is assigned a weight
depending on its structural complexity, n-gram length and depth in the tree.
Once the tree is constructed, we select the query terms that satisfy a minimum
weight threshold condition, beginning at the root of the tree and traversing the
branches all the way to the leaf nodes. Empirically, a good minimum weight
threshold is about 25% of weight of the root term.

Fig. 1. Weighted Query Tree with a weight of W and minimum threshold 0.25W

The query term nodes which are selected for inclusion in the final query object
are shown in double circled with weight >= 0.25W .

The weight of each query term is computed as follows. It is directly propor-
tional to the complexity and length and inversely proportional to the depth of
the term node.

Weight(term) = (Complexity * Length) / Depth + Special Boost

Complexity: Complexity of a term node is computed as the sum of complexities
of its child nodes and a predetermined complexity value of the current node. A
leaf node typically has complexity of 1. Complex structures like fractions, square
roots, matrices etc., get a higher weight thus pruning away the less complex
structures which might result in noisy matches.
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Length: Length of a term node is computed as the sum of lengths of its child
nodes, with the exception of stop word operators as explained above. Longer
n-grams have better structural overlap with the query yielding more relevant
documents.

Depth: Depth of a term node is equal to the number of branch traversals
from the root node to term node under consideration. In general, the higher the
depth, the less relevant it is to the query expression.

Special Boost: Certain operators and operands have special meaning in a
mathematical expression. For example, common elementary functions such as
sin, log, etc., often play a special role in capturing the intention of the user. We
have pre-compiled a list of these special operators and operands that are used
to boost the weight of the term at query time.

Wild card queries for mathematical expressions are also supported analo-
gously to text wild cards. The scope of the wild card matching is limited to the
current mathematical structure. For example, x

∗ matches any fraction with x in
the numerator, but not x + y + z . Wild card query terms have less weight com-
pared to their regular counterparts. This is to avoid matching longer ambiguous
expressions.

2.3 Expression Level Query Formulation

Query formulation with appropriate weights is vital for effective information re-
trieval. The challenges of formulating an effective query is emphasized in equa-
tion retrieval due to complexity of the mathematical structure and the vagueness
in defining mathematical similarity to a given query expression. Meeting the in-
formation retrieval need of a diverse user population, from high school math
students to research scientists, poses an added challenge.

An effective query ideally should be built around the search task, together
with an understanding of the indexing and relevance sorting mechanisms in-
volved. For example, a user with sufficient knowledge to boost the weight of
individual query terms and specify specific fields in which to look for them can
pose a more intelligent query. Unfortunately, domain expertise, awareness of un-
derlying conceptual search model and its effect on retrieval performance are all
the qualities of an expert user. The general user population is far from being
willing or able to formulate an intelligent query. Consequently, an expression-
level query formulation algorithm, incorporating such expertise, is necessary to
attempt to heuristically transform a simple query expression into an advanced
query.

We have chosen to optimize our query formulation algorithm to maximize
recall to as far as possible without considerably degrading the precision. To this
end, our algorithm uses three different logical operations, depending on con-
text, to combine the individual query terms, specifically Boolean, Spanning and
Disjunction max operations. The following sections explain how these different
logical operations are used and their effect on retrieval performance, using the
query expression 2y+z

x2 as an example.
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Boolean Logic. In general, Boolean IR systems yield high precision but low
recall. Terms are either present or absent from the document. By contrast, vec-
tor space models result in high recall due to partial matches, and vector space
models generally tend to outperform Boolean models due to the fact that precise
queries are difficult to construct and Boolean model output has no sense of rel-
evance ranking. For this reason, within the Lucene atomic term queries (in our
case queries for individual n-grams) are performed using a vector space model.
However, it is still useful to combine the result sets from term queries using the
standard Boolean operators AND, OR and NOT[16].

In our algorithm, Boolean combinations of sub-queries are used in situations
when the sub-queries have an inherent Boolean logical relationship from the
notational structure of the parent query. For example, a query for a fraction
naturally decomposes as a query for the numerator and the denominator. For the
query example above, the Boolean query “numerator: 2y +z AND denominator:
x2 most precisely retrieves documents containing a 2y + z in the numerator field
and x2 in the denominator field. Note that precision nonetheless suffers, since
there is no guarantee both sub-expressions occur in the same fraction within a
document.

Span Logic. Because of commutativity and associativity of common arithmetic
operators, some flexibility in the order of terms is mandatory for any mathemat-
ical search system. Our algorithm uses span logic to do this. Span logic restricts
the search space to only those documents where sub-query objects appear within
a given proximity of one another defined by a span scope. In our algorithm, the
span scope is computed based on the length of the sub-query objects as well as
their weights. To provide mathematically meaningful flexible structure match-
ing, span scopes are limited to consecutive terms belonging to the same index
field. For the query example above, a span query ”numerator: (2y, z){4}” would
match those documents where 2y and z appear in the numerator field within
an n-gram distance of 4. This would match an expression like 2y + x + z in the
numerator. Use of span logic generally enhances overall recall.

Disjunction Max Logic. Disjunction max logic is used to select the best
match possible among set of terms appearing in different search fields. Unlike
the Boolean OR operation, disjunction max operation does not add the search
spaces. It rather picks out those search fields that have the maximum possibility
of finding relevant documents. This helps to rank the documents in the order
of structural preference rather than based on multiple occurrences of a term in
the extended fields. Without disjunction max logic, a document with multiple
occurrences of x2, in non-denominator fields would rank higher than a document
with only one occurrence x2 in the denominator field.

Query weights for span and disjunction max logics are significantly higher than
the Boolean logic counterparts to achieve higher precision. Empirically we have
observed that judicious application of span and disjunction max logic increases
precision without undue loss of recall. There is, however, a fair amount of art
involved in tuning query weights and logic types. Our algorithm currently uses
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a precompiled table of weights and types, based on extensive experimentation,
for building up expression queries, taking into account the types of n-grams and
index fields involved.

The overall weight of the final query object for a mathematical expression
must be normalized for the purpose of comparison of different query objects.
Normalization is particularly important when the user further restricts the search
scope by providing text search terms.

Text queries are formulated in similar, if simpler, fashion. At index time, a
document is analyzed to extract title, heading and body content, which is then
indexed in separate search fields. During query time, user text query terms are
combined and searched in all three fields with different weight levels. The title is
given the highest weight followed by heading and body. Text query weights are
normalized with respect to math expression query weights. Both math expression
query and text query objects are combined with Boolean logic OR in our current
implementation.

3 Data Normalization

The approach to query formulation for mathematical search described in section
2 relies heavily on the assumption that notationally equivalent expressions will be
indexed the same way. Unfortunately, mathematical expressions encountered in
real documents are very different from mathematical expressions in the abstract;
they are represented in diverse markup languages, created by specific authors
and tools, all of which introduce their own quirks, conventions and errors. In
practice, mathematical expressions that, in the abstract, should be identical can
appear very differently to a search system.

The search algorithm described above was originally developed and tested
against a limited set of carefully controlled test documents. In order to explore
the effects of various strategies for addressing the goals of section 2.1 on pre-
cision and recall, it was necessary to use test data where it was possible to
determine with confidence what the expected results of a given query should be.
We expected the algorithm would perform less well with real-world data, but
when we began testing it, we were somewhat surprised to discover that artifacts
of encoding, conversion, authoring tools and author coding choices completely
dominated, rendering the algorithm virtually useless. Consequently, it was clear
that an effective mathematical search system would need to combine a rigorous
data normalization component as well as a good search algorithm.

By analyzing documents from a variety of sources, we identified seven ar-
eas in which data normalization was required. Since our algorithm operates on
mathematical expressions encoded in MathML, the starting point of our analysis
included both documents containing MathML directly from the publisher as well
as document where we converted the mathematics to MathML using 3rd party
conversion tools. We attempted to include MathML from most major author-
ing and/or conversion systems, including Mathematica, MathType, MathFlow,
LaTeXML, Hermes, TeX4ht, itexmml and TtM.
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3.1 XML and MathML Error Correction

The first and most fundamental data normalization that the documents we ex-
amined required was the correction of XML and MathML errors. Documents
containing MathML from publishers or produced with MathML tools largely
contained valid MathML. However, essentially all converted documents con-
tained XML errors, MathML errors or both, often systematic and in large num-
bers. Typically XML errors were unclosed elements, but also run-away attribute
values, malformed tags, and other serious errors. MathML errors were usually
incorrect child counts, e.g. an <msup> element with more or less than 2 child
elements.

To address these issues, our indexing workflow begins by passing documents
through an error correcting parser we developed that inserts missing end el-
ements, quotation marks, etc. in order to produce well-formed XML. It then
checks for MathML element counts, either wrapping extra arguments in merror
tags or inserting empty merror elements as necessary. It also strips unrecognized
elements and attributes, as well as MathML attributes whose values are not
legal.

In addition, during this normalization pass, we implemented a number of ad
hoc rules via regular expressions to correct particular systematic problems with
the output of specific tools.

3.2 Character Normalization

Perhaps the most significant factor contributing to poor recall for our algorithm
turned out to be differences in character data that made little or no visual differ-
ence. Unicode contains a number of characters that look like a minus sign, an ab-
solute value bar, and so on. Consequently, a second critical normalization phase
chose canonical representatives for each equivalence class of such characters.

3.3 Removal of White Space and Other Non-significant Data

Trivial differences in white space and other non-significant data gives rise to
problems similar to the characters discrepancies of the preceding section. While
white space can carry meaning in mathematics through alignment, etc., we con-
sidered it unlikely that a user would be successful in formulating effective queries
to find such cases. On the other hand, the vast majority of white space differ-
ences we observed caused serious problems in basic searches, e.g. the presence
or absence of a small amount of space before the differential in an integral. Con-
sequently, our third normalization pass removes suspect white space constructs,
such as <mtext> elements containing only whitespace, <mspace>, <mphantom>,
and <mpadded> elements.

Though not technically white space, we also remove other similarly trouble-
some constructs in this pass, such as <maction> elements and semantic anno-
tations. We also remove redundant <mrow>s, as in this example: <mrow> <mrow>
<mi> x </mi> </mrow></mrow>.
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3.4 Correction of Poor or Ambiguous MathML

The most technically challenging phase of normalization is the application of
heuristic rules to improve poor or ambiguous MathML. This has several aspects.
The first is fairly straightforward, and consists in the corrections of common
errors in MathML coding that produce visually acceptable results using markup
that is at odds with the intended mathematical structure.

A well-known example of such an error is attaching a superscript to a paren-
thesis, instead of the entire base expression to which it applies. Other common
problems in converted material include a superscript encoded as an msubsup¿
with a dummy script, or even a <mmultiscript>with a single non-empty script.
Another common case is a function where the MathML structure it at odds with
the natural grouping of the function with its argument, eg. f(z) = w where the
(z) = w is grouped in an <mrow>.

Beyond such relatively clear-cut problems, there are a number of mathemat-
ical notations that are commonly encoded in several different ways. The most
important issue is the encoding of elementary functions such as sin x. There are
at least three common coding conventions:

<mo>sin/mo>mi>x/mi>
<mi>sin/mi>mi>x/mi>
<mi>sin/mi>mo>ApplyFunction/mi>mi>x/mi>

While one may argue one is preferable to another, all are valid, so in these cases,
our normalization algorithm merely picks a canonical representative.

Another important case where it is necessary to pick a canonical represen-
tation is decimal numbers. Both American and European conventions for the
comma and decimal point are common, and one format or the other must be
chosen. A second issue especially common in the output of translators is that
each digit is separately tagged as an <mn> in numbers such as 123. The comma
and decimal are similarly tagged as operators. For negative numbers, the minus
sign may be separately tagged as an operator or be included in the CDATA of
an <mn>.

Finally, it is very common for expressions to be sub-optimally structured from
the point of view of the XML nesting structure reflecting the mathematical struc-
ture. One commonly encounters expressions such as as an unstructured row of
characters. In other cases, the same expression will be encoded hierarchically
with nested mrows¿ grouping arguments and operators. Since the nesting struc-
ture can have a large impact on subsequent normalization operations as well
as n-gram formation, we apply heuristics to enrich sub-optimal MathML with
additional structure. This involves several steps.

First, we attempt to pair fence operators, and refine the MathML structure
by adding <mrow>s to group fenced terms. For parentheses, brackets, braces and
other fence operators with a left and a right delimiter, a deterministic algorithm
is possible, at least once occurrences of fence characters where they do not func-
tion as fences (e.g. in the interval notation (−1, 0] and so on) have been noted.
However, for notations such as absolute value bars, where the same character
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functions as both a right and a left fence character, genuinely ambiguous nota-
tions arise. In these situations, we apply heuristics to group terms. After fences
have been disambiguated, we apply heuristics to distinguish between ambigu-
ous multiplications and function applications, e.g. is a function applied to an
argument, or a multiplication of terms.

3.5 Tree Refinement

The preceding normalizations pave the way for a critical tree refinement stage,
where the MathML structure is refined so that no mrow¿ contains operators
with more than one precedence level. In simple cases, the tree refinement algo-
rithm reduces to standard operator precedence parsing. However, in order to be
well defined on all MathML expressions, and to actually produce the canonical
MathML structure that is our goal, it must be augmented in several ways.

First, it is necessary to assign precedences to the many hundreds of notations
that function as an “operator” in terms of MathML coding, which includes many
mathematical notations that are not commonly considered in traditional arith-
metic precedence parsing. Second, the algorithm must be extended to accom-
modate the MathML notion of an embellished operator, typically an operator
symbol that has been decorated with scripts or accents, etc. The outline of such
an augmented precedence parser was first presented by N. Soiffer and B. Smith
of Wolfram Research to the W3C Math Working group in 1996-7.

3.6 Synonyms

The normalization steps described in the preceding sections do a fairly good
job of producing a normal form for most commonly encountered encodings of
the vast majority of MathML expressions. While severely pathological MathML
expressions still cause problems, our empirical results suggest this class of ex-
pressions is no more than a few tenths of a percentage of all expressions.

Where notational normalization leaves off, however, mathematical normaliza-
tion begins, and the line is not always clear. For the practical and theoretical
reasons enumerated in the introduction, we chose not to go down the path of
attempting to identify mathematically similar expressions in the context of this
project, and instead we have focused on notationally similarity for purposes of
ranking search results. Nonetheless, after experimenting with our algorithm on a
collection of test documents normalized as described above, pragmatism obliged
us to make a few concessions toward mathematical equivalence. Consequently,
in a sixth and final normalization pass, we select a canonical representative from
equivalence classes of mathematical synonyms.

A very basic and widespread type of notational synonym consists in varying con-
ventions for parenthesizing arguments of elementary functions, e.g. vs. . Similarly,
the choice of language for elementary function names introduces additional sets
of synonyms. Beyond that there are many notational synonyms from relatively
simple ones, e.g. competing notations for permutations, to complex ones, such as
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notational synonyms for differentiation. To date, we have only implemented nor-
malization for a few basic synonym classes, where empirical experiment suggested
that recall for searches was perceived as particularly poor to most users without
them. This is a very coarse, subjective criterion of course, and more sophisticated
handling of synonyms is an obvious area of improvement for the future.

3.7 Variable Names

Another area that empirical experiments indicated as critical to user perception
of search recall involves variable names. The question of when a variable name
is significant is a subtle one, and involves both psychology and mathematical
equivalence. A user looking for is quite likely interested in finding documents
containing the expression . At the same time, as user looking for is less likely to
want to see results like .

The approach we have taken is to define equivalence classes of variable names
that are traditionally used for similar mathematical purposes across many areas
of mathematics. Examples would be {i, j, k} used as indicies, {s, t} used as pa-
rameters, {f, g} used as function names , and many others. At indexing time,
we index an expression first using its original variable names, but then also in a
separate index where variable names are abstracted as merely labeled instances
of variables from one of these equivalence classes. That is, would be indexed as
something like

function_var_1 ( parameter_var_1 + parameter_var_2)

This enables use at query time to query for both exact and abstract variable
names, with exact names naturally given much greater weight.

While this technique improves perceived search recall, it is definitely a blunt
instrument. More sophisticated handling of the variable name problem is an area
for future work. In particular, it is probably necessary to give users at least some
control over variable name handling.

4 Our Evaluation

An ideal IR model should retrieve all relevant documents and only relevant doc-
uments, in the order of their relevance. Performance evaluation of an information
retrieval model targeting a diverse user group with, different information needs is
challenging. Evaluation methods should credit IR models that can retrieve highly
relevant documents in the order of their relevance with appropriate rankings. Al-
most all the evaluation methods suffer from the problem of defining appropriate
relevance levels. Binary relevance does not reflect the way humans judge the
relevance of a document. Instead each document has a degree of relevance.

We adopted the method of Tetsuya Sakai’s Average Gain Ratio[15] using
multiple relevance levels. For all the evaluations, our n-gram model with equal
weighting and zero threshold cut-off was used as the base model. Subsequent iter-
ations of improvement in algorithms were informally evaluated against this base
model to assess the performance. Queries with varying degree of mathematical
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complexity and length were selected for this purpose. For each of these queries,
our team members assigned multiple relevance levels to the all the documents
in the index.

In our informal trials, disjunction max scoring greatly increased the number of
relevant documents in the top few as compared to using Boolean scoring. Select-
ing only those query terms with query weight greater than the minimum thresh-
old filtered spurious documents with no relevance to the query. Also boosting
certain query terms over others helped better capture the higher-level mathemat-
ical intent of queries. We also found that normalization substantially improved
recall. Without normalization, recall was quite poor, due to the variety of ways
in which equivalent expressions were encoded. Each of the normalization steps
described in section 3 was found to improved recall.

While a careful, quantitative evaluation of precision and recall remains to be
done, the following examples are suggestive of the current performance. In a
collection of around 40,000 documents (see the next section) a query for the ex-
pression s1, . . . , sn ∈ {−1, 1} that is known to be in a document in the collections
does not find that page in the top 20 results. No match rates higher than 2 stars
on a scale of 0 to 5, with the top hits being lengthy formulas containing ∈ {−1, 1}
several times in one case, and s1, . . . , sn in the other. At the same time, a search
for Tf(x)Lf(x) returns the document in which the expression is known to reside
as the top hit (it’s 2.5 star ranking belying a normalization problem with the star
scors). The second document rates half a star, and contains df : TxX → Tf(x)Y .
This kind of variation in search performance from query to query is typical, and
suggests further research and more careful evaluation is still needed.

5 The Mathdex Search Engine

We have implemented the search algorithm and normalization workflow de-
scribed above as the Mathdex web application. Users enter mathematics query
expressions via a graphical equation editor applet. Additional text query terms
are entered via a standard HTML text box. Query results are presented to the
user in a list, with a document synopsis and a ’best match’ equation for each
result document. The synopsis is prepared at indexing time by extracting signif-
icant phrases, based on term frequencies and document location, e.g. titles and
headings are more likely to appear in the synopsis, as are sentences with using
rare words or mathematical expressions that appear repeatedly in the document.
The best match equation is selected similarly at indexing time, and displayed
to the user via a mouseover area. The best match equation is displayed sepa-
rately, because it may not appear in the synopsis, since in general the best match
equation and surrounding text will not be a good choice for conveying what the
document is about to the user. If there are multiple equations with the same
’best match’ rank, only the first one is displayed currently.

Subject to copyright restrictions on the original document, users may also be
able to view a cached copy of a document in the result set. In cache documents,
all matching mathematical expressions are highlighted. This is accomplished by
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adding JavaScript code to the cache version of the document that searches the
document content for expressions matching the query terms. Cache content is
prepared in multiple versions, using images and MathML for the mathematics.
Content negotiation is used to send highest functionality version supported by
the user’s browser.

At the time of this writing, Mathdex currently indexes around 25,000 docu-
ments from the arXiv[9], 12,000 pages from Wikipedia containing mathematics,
approximately 1300 pages from Connexions[8], and around 1000 pages of Wol-
fram MathWorld[18]. We plan to expand the volume of content indexed signifi-
cantly in the future.
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Abstract. Even though only a tiny fraction of mathematical knowledge
is available digitally (e.g in theorem prover or computer algebra libraries,
in documents with content-markup), our current retrieval methods are
already inadequate. With further increase in digitalization of mathemat-
ics the situation will get worse without significant advances.

When searching a formula, we often want to find not only structurally
identical occurrences, but also all (logically) equivalent ones. Further-
more, we want to retrieve whole mathematical theories (i.e. objects with
prescribed properties), and we want to find them irrespective of the
nomenclature chosen in the respective formalization.

In this paper, we propose a normalization-based approach to mathe-
matical formula and theory retrieval modulo an equivalence theory and
concept renaming, and apply the proposed algorithm to end-user query-
ing and knowledge sharing. We test the implementation by applying it
to a first-order translation of the Mizar library.

1 Introduction

The last two decades have seen a slow but steady accumulation of formaliza-
tions (or at least content-representation) of mathematical knowledge. We have
the Mizar Mathematical library [Rud92, Miz] with over 40 000 theorems, defini-
tions, and proofs, as well as the the PVS [ORS92, PVS], NuPRL [CAB+86, Nup],
and Coq [Tea] libraries of comparable size. But the developments tend to be
system-specific, non-interoperable, and redundant. Even inside a single library,
it is often simpler to reprove a theorem than finding an equivalent or stronger one
to reference. At the level of mathematical theories, the problem is aggravated,
since making theories applicable usually involves renaming (or reinterpreting) vo-
cabularies. In this area the field of mathematical knowledge management (MKM)
has not yet delivered its initial promise, i.e. that an investment into formalization
(or content markup) would yield improvements in automated management. The
process of the (human) mathematical community, which is based on peer-review,
communication, understanding and reformulating mathematical theories seems
to deliver more theory-reuse than the MKM-based counterpart. We believe that
to change this, we must solve the knowledge retrieval problem at the heart of
finding applicable theorems and theory reuse. It is here that our current tech-
nology is inadequate. To find a theorem to refer to in a library we should not
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have to know its exact mathematical structure, or even its visual appearance1.
Consider for instance three of many more possible variants to formalize “f is a
continuous function”:

∀ε.ε > 0 ⇒ ∃δ.∀x.∀y.0 < |x− y| ∧ |x− y| < δ ⇒ |f(x)− f(y)| < ε
∀ε.∃δ.∀x, y.ε > 0 ⇒ (0 < |x− y| ∧ |x− y| < δ ⇒ |f(x)− f(y)| < ε)
∀ε.∃δ.∀x, y.ε > 0 ∧ |x− y| < δ ∧ 0 < |x− y| ⇒ |f(x)− f(y)| < ε

(1)

A query for one should also find the others, since they are all equivalent. Given
an equality theory E, we speak of an E-retrieval task, if we want to find all
occurrences of formulae t in a collection that are E-equal to a query q. If the
theory E includes logical equivalence, we speak of an ε-retrieval task. Unfortu-
nately semantical equivalence is undecidable in general, so we will have to make
due with search engines that satisfies the query intention approximatively. The
best approximation could be achieved by enlisting automated theorem provers
during search, but performance and termination problems make this approach
intractable, so we have to restrict our notion of equivalence. There is also another
reason to restrict equivalence during retrieval: under full logical equivalence, all
tautologies become equivalent, since they are all valid.

Rather than coming up with a theoretical solution of relaxed equivalence, we
will integrate approximation into the retrieval process itself to ensure efficiency.
We view logical equivalence as an equality theory and relax it by viewing two
formulae as equivalent, iff they can be co-normalized. Given a normalization
function ν, we say that the formulae are ν-equivalent, iff their ν normal forms
are syntactically identical. ν-equivalence provides an efficient and useful notion
of equivalence2, efficiency in νε-retrieval (i.e. ε-retrieval modulo ν-equivalence)
is achieved by normalizing the search corpus of the digital library at indexing
time. This moves the cost of ν-retrieval almost completely to the preprocess-
ing/indexing phase: normalizing the query formulae is cheap, since they are
usually rather small.

We will consider two applications of νε-retrieval that need two slightly dif-
ferent forms of normalization in this paper. In νε-retrieval for formula search
— e.g. to extend the MathWebSearch formula search engine [Kc06, Kc07]
— we are interested in a ν-retrieval of formulae with given constants (e.g. the
absolute value function in the formulae in (1)). If we want to νε-retrieve whole
mathematical theories (i.e. objects with prescribed properties), we want to find
them irrespective of the nomenclature chosen in the respective formalization.
We will concentrate on the latter application in this paper, since it is the more
radical application and indicate where we need to make modifications to the
normalization process for the former.

An application of νε-retrieval, which we will not cover in this paper is library
merging. Currently, formalized mathematical content is scattered across many
1 Which can differ considerably, even if the structure is known. Consider for instance

the presentational variants ∀x.ex > 0 as equivalent to ∀t. exp(t) > 0.
2 Semantical formula search machines as MBase and MathWebSearch are opti-

mized on speed performance by supporting only alphabetical renaming of bound
variables efficiently.
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digital libraries which overlap considerably; e.g. one can find a basic Algebra
concept like ”group” in almost every digital math library. Merging these libraries
would obviously improve the knowledge accessibility since redundant searches
could be avoided. More importantly, however, knowledge could be enlarged if
theory inclusions can be detected.

2 Formula Normalization for Equivalence

This section introduces all normalizers used in this paper. Recall that in term
rewriting we say that a formula (or term) is in R-normal form iff it is not re-
ducible w.r.t. a given set R of rewrite rules. R is called normalizing iff every
input formula has a R-normal form. Note that normalizing rewrite rules do not
necessarily produce unique normal forms as they depend on the application or-
der. Any terminating choice of application order yields unique normal forms and
thus a formula transformation mapping. Note furthermore, that any normalizing
algorithm f is idempotent, i.e. f(f(t)) = f(t) for any formula t. For the purposes
of this paper, we need to generalize: We will call a formula transformation map-
ping a normalizer iff it is idempotent and preserves the semantics of formulae.
Normalizer given by a set R of rewrite rules, are prime examples, but we will
also encounter others below.

The methods described in this paper are largely independent of the choice of
particular logic, we will presuppose a standard formulation of first-order logic
with the quantifiers ∀ and ∃. We will use a kind of vector notation on quantifi-
cation binders, where x stands for a sequence x1, . . . , xn of variables. Contrary
to standard expositions of first-order logic, we will ruthlessly use numbers as
variable-, constant-, function- and predicate symbols in the normalization pro-
cess. These should be considered as purely presentational devices for an infinite,
ordered supply of (traditional) symbols of the respective arities. Let us explicitly
note that all methods presented in this paper work with typed and higher-order
logics with little change. In extensional higher-order logics, where propositions
can be embedded into terms more care must be taken to ensure that the embed-
ded propositions are also normalized. Moreover, logics with sequential logical
operators as used e.g. in PVS [ORS92, PVS] (where in a formula A ∧ B, the
subformula B will never be evaluated and might even be ill-typed if A can be
determined to be false) will need some adaption.

The most prominent normalizers involved here are the various transformations
to negation-, prenex-, and conjunctive/disjunctive-normal form. Their rewrite
rules can be found in introductory text books on logic. Next we introduce two
straightforward but useful normalizers:

Merge Bindings. The merge bindings normalizer ∇mb is defined by the rewrite
rule Qx.Qy.ϕ → Qxy.ϕ for both quantifiers Q ∈ {∀, ∃}.

Sort Binders. The normalizer sort binders (∇sb) is defined as procedure lexi-
cographically sorting all the binders of a formula, e.g. ∇sb(∀z, w.∃y, x, z.φ) =
∀w, z.∃x, y, z.φ.
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The following sections contain some normalizers that — even though they
seem simple — seem not to have been discussed in the literature yet even though
AC-normalization must have been considered (and rejected) for AC-unification.
Incidentally, neither of the solutions presented here were found in a recent related
article about “Semantic Matching for Mathematical Services” [NP05]. At least
the binding-last strategy is an improvement over the folklore solution.

2.1 α-Normalization

An α-normalizer is a formula transformation mapping that replaces each non-
logical symbol occurrence in a formula ϕ by a number where different occurrences
of equal variables are substituted by the same number, but different variables
by different numbers. Obviously this procedure is idempotent and always termi-
nating. Moreover renaming bound variables does not change the semantics of a
formula: input and output formulae are said to be α-equivalent. Renaming free
variables or constants does not change the semantics of a formula provided that
we rename consistently all involved free variables and constants of the context
where the formula lives (cf. Section 3). Depending on the application, the notion
of what constitutes a context may change, and we assume a representation that
makes contexts explicit, e.g. as nested contexts in the Coq libraries [Tea] or in
OMDoc documents [Koh06]. For our theory-retrieval application, the context
will be a theory.

Let ∇as be the α-normalizer induced by a depth-first but binding-last order.
The latter means that the numbering of binding occurrences is executed after
the numbering of the formula body is finished. For instance take the formula
∀x, y.R(f(x, y), x) then the procedure is as follows:

1. The depth-first walk through the body of the formula builds the renaming
σ = [R → 1, f → 2, x → 3, y → 4] and simultaneously applies it to the body
which yields ∀x, y.1(2(3, 4), 3).

2. The renaming σ is applied to the binding occurrences: ∀3, 4.1(2(3, 4), 3)

As a renaming of α-normalization is bijective we can always easily reconstruct
the original formula. To make the explicit notation of renaming more convenient
we make use of this bijectivity: Instead of σ = [v1 → 1, . . . , vn → n] we will just
write σ = [v1, . . . , vn].

Binding-last is Superior to Binding-first Numbering. Naive α-normalization does
binding-first numbering; i.e. the numbering of the variables is determined by the
order in binding-occurrence. To see the advantage of the binding-last strategy,
consider the following equivalent formulae t1, . . . , t4:

∀x, y.R(x, y) ≈ ∀x, y.R(y, x) ≈ ∀y, x.R(x, y) ≈ ∀y, x.R(y, x)

If we apply binding-first numbering and ∇sb to them, we obtain two normal
forms irrespective of the order — e.g.

∀1, 2.3(1, 2) for t1 and t3 and ∀1, 2.3(2, 1) for t2 and t4

for ∇sb before numbering. But ∇sb(∇as(t)) = ∀2, 3.1(2, 3) for all four formulae!
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2.2 Normalization for ACI Operators

Consider two applications f(x1, . . . , xn) and f(y1, . . . , yn) where f is an asso-
ciative, commutative and idempotent (ACI) operator, e.g. the binary logical
operators, set union, or set intersection. For ACI-retrieval the task is to find, a
permutation π for the arguments y1, . . . , yn such that xi = yπ(i) for i = 1, . . . , n.
Matching such expressions cause combinatorial explosion if it is done naively. In
fact this is one of the weak point of almost all math search engines known to the
authors ([DGH96] being a notable exception).

For ACI normalization the respective expression is translated into an object
of nested symbol tuples/sets: Let A be an ACI and N be an non-ACI operator;
c an atomic and ϕi any kind of expression. Then we translate inductively:

c �−→ c

A(ϕ1, . . . , ϕn) �−→ 〈A, {ϕ1, . . . , ϕn}〉
N(ϕ1, . . . , ϕn) �−→ 〈N, 〈ϕ1, . . . , ϕn〉〉

Obviously every result expression can be uniquely translated back; i.e. the trans-
lation is an isomorphic representation of the original formulae. For the following
let us call them ACI representations. For instance (a ∧ b) ∨ (b ∧ c) ⇒ (a ∨ c) (in
prefix notation ⇒ (∨(∧(a, b),∧(b, c)),∨(a, c))) translates to

〈⇒, 〈∨, {〈∧, {a, b}〉, 〈∧, b, c〉}, 〈∨, {a, c}〉〉〉.

We will now define an ACI normalizer ∇aci that normalizes the ACI repre-
sentation of a given expression ϕ. During the ACI normalization an intermediate
ACI expression ϕN and a set of renamings Σ is computed with σ(πϕ) = ϕN for
all σ ∈ Σ and an appropriate and semantics preserving permutation π of sym-
bols in ϕ. Our ACI normal forms after all will be each of σϕ. Most importantly
this ϕN will be the minimal expression with respect to a given term ordering. In
fact the choice of the term ordering is irrelevant. It just needs to be fixed once,
so without loss of generality we use to the following, inductively defined term
ordering:

– numbers are ordered as usual, but symbols are considered to be equal.
– A number is smaller than a symbol,
– a symbol is smaller than a tuple,
– for two tuples that with fewer arguments is the smaller
– for two tuples of same arity that tuple is smaller whose first component (going

from left to right) is smaller than that of the other tuple, e.g. 〈1, 2, {a, b}〉 <
〈1, 3, 4〉 since 2 < 3 in the second component (the tail of the tuple doesn’t
matter).

– a tuple is smaller than a set.
– the comparison between set works similar to that of tuples when sets are

represented as ordered tuples.

Note, since symbols are considered to be equal the term ordering of ACI
expression is not total in general. However, the set of all ACI expressions where
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symbols are replaced by numbers has a total term ordering (since numbers are
totally ordered whereas symbols aren not). This is important, because we are
looking for the unique representative ACI expression.

The ACI normalization of 〈⇒, 〈∨, {〈∧, {a, b}〉, 〈∧, b, c〉}, 〈∨, {a, c}〉〉〉 from our
above example returns the normalized ACI expression

〈0, 〈1, {〈2, {3, 4}〉, 〈2, {3, 5}〉}, 〈1, {4, 5}〉〉〉

together with these two renamings

[imp,∨,∧, b, a, c], [imp,∨,∧, b, c, a]

We now want to sketch our algorithm of ACI normalization: The basic idea is
to replace all symbols of the input expression stepwise by numbers augmenting
the renamings in parallel with those symbols just removed from the expression.
The key idea for that is to remove the next “minimal” symbol from the expres-
sion and replace it by a number determined by the current renaming: If this
symbol is a member of a renaming then return the corresponding number (see
the convention introduced in Section 2.1) and otherwise append the symbol to
the renaming and return the corresponding new number.

Let us fortify our intuition with an example and use prox for the procedure
which fetches all “minimal” symbols from a given expression. Let s be a symbol,
n be a number, ϕi be an arbitrary ACI expression then we define inductively:

prox(s) = {s} prox(n) = ∅

prox(〈ϕ1, ϕ2 . . . , ϕn〉) =

{
prox(ϕ1) if ϕ1 contains symbols
prox(〈ϕ2 . . . , ϕn〉) otherwise

prox({ϕ1 . . . , ϕn}) = prox(ϕ1) ∪ . . . ∪ prox(ϕn)

For instance prox applied on {〈1, a〉, 〈1, b〉} evaluates to:

prox({〈1, a〉, 〈1, b〉}) �→ prox(〈1, a〉) ∪ prox(〈1, b〉) �→ prox(a) ∪ prox(b) �→ {a, b}

The procedure minσ takes an expression and a set of renamings and fil-
ters all renamings that make this expression minimal if applied. For instance
minσ applied on the expression ϕ := 〈{a, b}, {b, c}〉 and the renamings [a, b] and
[a, c] would return only [a, b]. To understand this we have to apply them on ϕ:
[a, b]ϕ = 〈{1, 2}, {2, c}〉 and [a, c]ϕ = 〈{1, b}, {2, c}〉. The second result expres-
sion is greater than the first one. Hence only [a, b] makes ϕ minimal.

At last we need the ⊕ operator that appends a symbol to a renaming; i.e.
[s1, . . . , sn] ⊕ sn+1 = [s1, . . . , sn, sn+1]. We extend its definition to arrays of
renamings and arrays of symbols by applying ⊕ on those components.

With these procedures we write an ACI algorithm as recursive function ∇aci

terminating on a fixpoint:

∇aci(Σ, ϕ) :=

{
Σϕ if ϕ = ∇aci(Σ, ϕ)
minσ (Σ ⊕ prox(Σϕ))(ϕ) otherwise
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Hereby ϕ is the input ACI expression and Σ a set of renamings evolving along
the recursion. Initially Σ is the empty set. The algorithm always terminates
since the fixpoint is reached as soon as all symbols of the initial expression ϕ are
replaced by numbers and each recursion step replaces at least one symbol by a
number.

For a better understanding we demonstrate the algorithm on the example
input ϕ := 〈{a, b, c}, {a, c, d}〉:

prox(Σϕ) = {a, b, c}
Σ ⊕ prox(Σϕ) = ([a], [b], [c])

(Σ ⊕ prox(Σϕ))(ϕ) =

⎛⎝〈{1, b, c}, {1, c, d}〉
〈{a, 1, c}, {a, c, d}〉
〈{a, b, 1}, {a, 1, d}〉

⎞⎠
Σ := min

σ
(Σ ⊕ prox(Σϕ))(ϕ) = ([a], [c]) (1.recursion)

prox(Σϕ) = ({b, c}, {a, b})
(Σ ⊕ prox(Σϕ)) = ([a, b], [a, c], [c, a], [c, b])

(Σ ⊕ prox(Σϕ))(ϕ) =

⎛⎜⎜⎝
〈{1, 2, c}, {1, c, d}〉
〈{1, b, 2}, {1, 2, d}〉
〈{2, b, 1}, {2, 1, d}〉
〈{a, 2, 1}, {a, 1, d}〉

⎞⎟⎟⎠
Σ := min

σ
(Σ ⊕ prox(Σϕ))(ϕ) = ([a, c], [c, a]) (2.recursion)

...
Σ := min

σ
(Σ ⊕ prox(Σϕ))(ϕ) = ([a, c, b], [c, a, b]) (3.recursion)

...
Σ := min

σ
(Σ ⊕ prox(Σϕ))(ϕ) = ([a, c, b, d], [c, a, b, d]) (4.recursion)

So ([a, c, b, d], [c, a, b, d]) are exactly those renamings which minimize ϕ (i.e.
our ϕN mentioned at the beginning of this section) namely to 〈{1, 2, 3}, {1, 2, 4}〉.
Hence we have two normal forms: 〈{a, c, b}, {a, c, d}〉 and 〈{c, a, b}, {c, a, d}〉.

With a slight modification of the ACI normalization algorithm we can also
handle AC normalization (i.e. without I). For that we simply have to replace
sets in ACI expressions by multisets. Most prominent candidate expressions for
AC normalizations are addition and multiplication.

Finally it should be mentioned that AC(I) normalization as introduced here
doesn’t allow for a more efficient term matching in the worst case than the
naive approach does meaning testing all permutations. Such a worst case is an
expression where none of its AC(I) subexpressions share common symbols. In
practice, however, this is rather the exception as our experiments with the Mizar
library shows (s.section 4).
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2.3 Concatenating Normalizers to an Overall Normalizer

Now let ∇ be the normalizer obtained by chaining all the normalizers discussed
so far in the following order: elimination of ⇒ and ⇔, negation normal form,
prenex normal form, and conjunctive normal form, merge binding, ACI nor-
malization, formula abstraction, and sort binding. This order of normalizers is
empirically optimal in the sense that each normal form of this overall normal-
ization would represent a maximal equivalence class of formulae; i.e. every other
order of normalizers would yield smaller equivalence classes or at most of equal
size.

Finally an illustrative example demonstrates the normalization process on
some example formula:

∀x.∀z.R(x, z) ⇒ ∃y.(∀w.Q(y,w) ⇒ R(x, y)) ∧ R(y, z))
⇒-elim ∀x.∀z.¬R(x, z) ∨ ∃y.(∀w.¬Q(y,w) ∨ R(x, y)) ∧ R(y, z))
prenex form ∀x.∀z.∃y.∀w.¬R(x, z) ∨ ((¬Q(y,w) ∧ R(x, y)) ∨ R(y, z))
CNF ∀x.∀z.∃y.∀w.(¬R(x, z) ∨ ¬Q(y, w) ∨ R(x, y)) ∧ (¬R(x, z) ∨ R(y, z))
merge binding ∀x, z.∃y.∀w.(¬R(x, z) ∨ ¬Q(y,w) ∨ R(x, y)) ∧ (¬R(x, z) ∨ R(y, z))
∇aci ∀x, z.∃y.∀w.(R(y, z) ∨ ¬R(x, z)) ∧ (R(x, y) ∨ ¬R(x, z) ∨ ¬Q(y,w))

The initial and the final formula are equivalent as each normalization step
preserves the semantics.

Up to now we have considered equivalence transformations whereby the con-
stants stay the same eventually. For a matching modulo renaming of constants
we need a different representation of normal forms gained by the final step which
we call formula abstraction. This normalization step returns for each input
formula ϕ a pair (ϕ̂, p) which we call the skeleton and the parameter of ϕ. The
parameter represent the constants of ϕ in the order from left to right as they
occur at first in ϕ. The skeleton is ϕ after replacing all its constants by place-
holders and a subsequent α-normalization. For instance the formula abstraction
of ∀x.R(x, f(x)) returns ∀1.0(1, 0(1)) as skeleton and [R, f ] as parameter.

Formula abstraction followed by sort binding are finally the last steps of the
overall normalizations. In the remainder of this paper we assume a formula being
completely normalized through all these steps when we talk of its skeleton and
parameter respectively.

3 An Illustrative Example for Knowledge Sharing

Let us now see how the νε-retrieval can be used for knowledge sharing and ex-
pansion by detection of theory inclusions. The basic idea behind theory inclusion
is to find a signature morphism between theories such that the axioms of the
translated source theory are theorems in the target theory. For that we normal-
ize all statements of the target theory and all axioms of the source theory. If we
can find for each skeleton of the source theory’s axioms a syntactically identical
statement skeleton from the target theory then we try to find a consistent map-
ping between the parameter of the source theory and those of the target theory.
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If we can find such a mapping between parameters we have found a signature
morphism which allows for theory inclusion.

An elementary example from arithmetic should demonstrate how this works
in principle. In contrast to the experiments on the Mizar library reported in
section 4, this is only a contrived example aimed at illustrating the process.

For the greatest common divisor (gcd) and the least common multiple (lcm)
one finds the properties that both gcd and lcm are associative and commutative.
Moreover we have the dual absorption properties:

∀a, b. gcd(a, lcm(a, b)) = a ∀a, b. lcm(a, gcd(a, b)) = a

In lattice theory we have two operators &, % and their associativity and com-
mutativity as axioms as well as absorption. Assume that the absorption axioms
are formalized by some author as follows:

∀x.∀y.x = (y % x) & x ∀x.∀y.x = (y & x) % x

All absorption formulae, from arithmetic and from lattice theory, would normal-
ize to a single skeleton ϕ := ∀1, 4.1 = 2(1, 3(1, 4))) due to the commutativity
property of all involved operators. The corresponding parameters are:

p1 = [gcd, lcm] p2 = [lcm, gcd] p3 = [&,%] p4 = [%,&]

A consistent mapping from the parameters of lattice theory to those of arith-
metic is for instance:

σ := p1 ◦ p3 = p2 ◦ p4 = [% → gcd,& → lcm]

Thus we translated with σ the axioms of the lattice theory into theorems of arith-
metic. The gained knowledge expansion is that all theorems from lattice theory
are also theorems in arithmetic after applying this translation. Note that this
translation is found via normalization that goes beyond simple α-equivalence, as
it also takes the ACI properties of the operators into account.

4 Experiments on a Real World Math Library

Mizar is a representation format for mathematics that is close to mathematical
vernacular used in publications and a deduction system for verifying proofs in the
Mizar language. The continual development of the Mizar system has resulted
a centrally maintained library of mathematics (the Mizar mathematical library
MML [Miz]). The MML is a collection of Mizar articles: text-files that contain
theorems and definitions, and proofs. Currently the MML (version 4.76.959)
contains 959 articles with 43149 theorems and 8185 definitions. Introductory
information on Mizar and the MML can be found in [RST01, Wie99]. The
Mizar language is based on Tarski-Grothendiek set theory [Try90], it is essen-
tially a first-order logic with an extremely expressive type systems that features
dependent types as well as predicate restrictions, see [Ban03] for details.
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In our experiments we don’t operate on the MML in its original format, but in
its translated equivalent in first order logic format [Urb03], which contains 1530811
formulae distributed over 12529 files. The main reason for using this version is that
for our experiment we need a simple notion of theory, namely as a set of axioms
(for the purposes of this paper we don’t differentiate between definitions and ax-
ioms), which constitute the theory, and a set of theorems, which were derived from
them. In the original Mizar format this simple notion is hidden behind combina-
tions of very Mizar specific notions such as ”article”, ”vocabulary”, ”notation”,
”cluster”, etc. To map these notions into our simple notion of theory would need a
quite deep understanding of the Mizar system. A structurally faithful translation
of the MML into the OMDoc format is currently under way [BK07], and we will
rerun our experiments on that and compare the results.

The translated Mizar library is represented in DFG syntax [HKW96], a first
order syntax that was designed to be easily parsed. Its concepts map straight-
forwardly to our needs: The main object of a file in DFG syntax is a “problem”
which we interpret as a “theory”. A problem contains arbitrarily many formulae
being either of the type “axiom” or “conjecture”. What is called conjecture there
in DFG syntax corresponds to our theorems as we assume that all conjectures of
the MML in DFG syntax are already proven and thus can be called theorems.

4.1 MML and Its Export in DFG-Syntax

We will need to review the basics of Josef Urban’s translation of the MML
to understand the retrieval experiment: Each object of MML gets a context-
independent name and all types and properties (e.g. commutativity, transitivity,
etc.) are translated into one or more first order formulae. Formulae are relativized
with respect to the typed variables occurring in them. For instance the Mizar

expression

for x being Real holds x-x = 0

translates to

forall([x], implies(v1 arytm(x), equal(k3 real 1(x,x),0))).

where v1 arytm(x) encodes the type information x being Real. The transla-
tion approach leads to specific artifacts worth mentioning for our experiments:

– First of all the “one theorem = one (self-contained) problem” principle in-
duces a considerable amount of redundant axiom repetitions in the assump-
tions.

– The translation from types and type hierarchies to first order formulae causes
another blow up of formulae.

– Even worse many of these type translations result in redundant tautologies
like forall([x], implies(and(true,v1 arytm(x)),true)). Since the ba-
sic Mizar type set translates to true all these tautologies result probably
from types involving set.

– Some formulae, which have less than 20 subterms in the original MML for-
mat, transform to monster formulae with over 800 subterms.
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To cope with these we had to adapt our initial normalization procedure:

– Normalizing, in particular to CNF, becomes to expensive for large formulae.
We decided to exclude formulae with more than 100 subterms from nor-
malization. Such very large formulae wouldn’t occur in handwritten math
libraries anyway.

– Formulae where an associative and commutative operator have more than
10 arguments are excluded from AC normalization. Again such formulae are
rather unlikely in hand written libraries - even after building the CNF.

– The frequent existence of true as part of formulae suggested an additional
normalization step to eliminate all these true occurrences. For instance a
formula like implies(true,and(true,r(x))) reduces to r(x). Moreover all
axioms which reduce to a single true are excluded from the insertion into
the database since they don’t influence the semantic of a theory.

– The true elimination normalization step, however, induced the subsequent
artifact of con- and disjunctions with only one argument, which were handled
the obvious way; e.g. and(true,r(x)) reduces to and(r(x)) and finally to
r(x)

As a statistical result of the database insertion process we found that the
original amount of 1530811 formulae can be reduced to 1416653 formulae due to
elimination of 114158 tautologies. 18472 of these 1416653 were of that said large
size that they were excluded from normalization. With the exclusion of large
formula, normalization ran in about two hours on a contemporary PC, which is
acceptable for an indexing-time step.

The most interesting number in this phase, however, is the ratio between
the number of original formulae vs the number of skeletons. We consider this
as a measure of redundancy or the other way round as indicator for potential
theory reuse. It turns out that these 1416653 original formulae are instances of
just 18155 skeletons; i.e. about every 80 formulae share the same skeleton. It
must be said, however, that this factor significantly relies on the ”one theorem
= one (self-contained) problem” principle (see above). Hence a deeper analysis
is needed to find out which percentage of formulae with common skeletons are
not just simple copies generated by that principle.

4.2 TheoScrutor: A Knowledge Base Architecture for Normalized
Formulae

TheoScrutor, our implementation of a theory search engine, has a simple
architecture given in Figure 1. For indexing (i.e. initialization of the database)
all files of the MML in DFG syntax are fed to a parser and then normalized and
finally all normalized formulae are inserted into a MySQL database. The parser
and the normalizer are implemented in Haskell; a database record contains a file
name and line number referencing the occurrence of the normalized formula, its
skeleton, and its parameter .

To query theory inclusions of a source theory S this theory is fed as file
in DFG syntax to the request process which consists of the same parse and
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Fig. 1. Architecture of the theory inclusion search engine TheoScrutor

normalization steps as the indexing process. The response of this request is a list
of target theories Ti together with a set of signature morphisms {σj}i,j . Each
pair (i, j) of theory and signature morphism represents a theory inclusions as
described in section 3. As additional information to each signature morphism a
mapping between source axioms and target axioms or theorems is attached.

4.3 Querying with TheoScrutor

To test the performance of TheoScrutor, we ran various test queries on the
database. The first kind of test is a single formula query. This can be consid-
ered as special theory inclusion query where the source theory has only one
axiom. The test is relevant, because it allows for a performance comparison to
the MathWebSearch even though there are differences: MathWebSearch

supports subterm instantiation queries (i.e given a term t, it returns all subterms
t′ of formulae with σ(t′) = t), and we support ν-equivalence. Hence the search
result sets can’t be the same in general. We are actually comparing ν-retrieval
using database indexing technology with term matching using term indexing
technology in our test. Moreover the MathWebSearch corpus on which the
test runs contains 77000 formulae.

We took as an example query the theorem from the file aff 1 t40 aff 1
of the DFG syntax version of MML : ∀.a, b, c.¬(f(a) ∧ (¬g(a)(h(a) ∧ l(a)))) ∧
(m(b, u(a)) ∧m(c, u(a)) ⇒ m(r(a, b, c), s(u(a))). As query request the theorem
is interpreted as axiom. Our search engine needs 200 ms to retrieve from 175
theory inclusions with 88 target theories. Very wide spread formulae are more
expensive in search time of course, but still acceptable. As witness query the
law of commutativity returns 11502 theory inclusions belonging to 4447 target
theories within just 6.4 seconds. An analogous3 query of commutativity with
MathWebSearch took 0.9 seconds returning.

Theory inclusion queries with multiple formulae is actually a distinctive fea-
ture of TheoScrutor, though it can partially be simulated by document-scoped
Boolean queries in MathWebSearch. Some experiments should give an idea

3 To simulate the formula abstraction, we replaced symbols with query variables.
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of TheoScrutor performance. The first experiment puts focus on a very small
source theory whereas the second investigates average size theories: The theory
of monoids is constituted by just two axioms: associativity and neutral element.
Querying monoids takes 0.2 seconds resulting in 291 theory inclusions with 141
target theories.

For the experiment with average size theories we took theories from MML
itself (in DFG syntax of course): the theory aff 1 t40 aff 1 with 40 axioms.
The theory inclusion query took 1.6 seconds finding e.g. different 192 theory
inclusions with targets aff 1 t37 aff 1 and aff 1 t47 aff 1 (both theories
basically share their axioms with the source theory). However, due to the artifact
that every theory contains only one theorem, only three different theorem reuses
are gained from these 192 theory inclusions.

5 Conclusion and Future Work

We have proposed a normalization-based approach to mathematical formula and
theory retrieval modulo an equivalence theory and concept renaming. Concretely,
we have developed a waterfall of normalizers that empirically maximize the ε-
equivalence classes, while keeping normalization tractable during search index
creation. One of the strengths of the normalization-based approach is that we
can adopt a flexible notion of scope of constant renaming, allowing to tailor
the method not only to νε-retrieval, but also to theory retrieval. The former is
a user-level task for the working mathematician, where constants should keep
their meaning, whereas the latter is a knowledge-engineering task for a library
maintainer, where constants must be open to renaming for re-interpretation in
different contexts.

With TheoScrutor we have an implementation of the proposed approach.
We tested it on a real-life task: the Mizar library and shown the steps involved
to be tractable (after some practical adaptations).

One may object that the theory inclusions found by our system are rela-
tively trivial from a mathematicians perspective. This is not surprising since
normalization is essentially based on pure logical equivalence transformation —
sophisticated proofs as mathematicians appreciate are not involved. However,
this perspective neglects an important aspect of our original goal, namely to
improve the accessibility of knowledge in large digital libraries. Whether a the-
ory inclusion is trivial or not from a mathematicians point of view is secondary
if our goal is to expand our knowledge base. Moreover what is folklore to one
mathematician in one research area is sometimes completely unknown to an-
other mathematician from a different area and certainly to a mathematically
interested layman too.

The strength of automated detection of theory inclusion via normalization is
the ability of scanning masses of formulae. Mathematicians are unsurpassable in
their dedicated field, but machines are good in precision and mass processing -
they can discover useful things which are simply overlooked by humans.
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We have concentrated on normalization-based ε retrieval in this paper, as the
normalization properties of logical connectives and quantifiers are given by the
base logic. The normalization could be extended by normalizers for constants
that are not abstracted over. To enable this, TheoScrutor would have to
scan the source theory axioms for e.g. the statements of the ACI properties of
addition. Currently, this is beyond the scope of our implementation.

We will re-run our normalization experiments on the structurally faithful OM-
Doc translation of the MML currently under way [BK07], and compare the
results with the first-order version. It would also be interesting to experiment
with other CNF transformations as normalizers, e.g. the very powerful FLOT-
TER [WGR96] implementation.
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Abstract. We explore mathematical knowledge in the field of electri-
cal engineering and claim that electrical engineering is a suitable area
of application for mathematical knowledge management: We show that
mathematical knowledge arising in electrical engineering can be success-
fully handled by existing MKM systems, namely by the Mizar system.
To this end we consider in this paper network theory and in particu-
lar stability of networks. As an example for mathematical knowledge in
electrical engineering we present a Mizar formalization of Schur’s the-
orem. Schur’s theorem provides a recursive, easy method to check for
BIBO-stability of networks.

1 Introduction

The aim of mathematical knowledge management is to provide both tools and
infrastructure supporting the organization, development, and teaching of math-
ematics with the help of effective up-to-date computer technologies. To achieve
this ambitious goal it should be taken into account that the predominant part of
potential users will not be professional mathematicians themselves, but rather
scientists or teachers that apply mathematics in their area. This point has been
adressed lately with the consideration of physics [HKS06] or geo-sciences [Ses07].
In this paper we inspect another application area for mathematical knowledge
management: electrical engineering.

The situation of mathematics in electrical engineering is — as in other engi-
neering sciences — twofold. On the one hand there is a number of areas, such as
for example network theory, control engineering or filter design, based on clean
mathematical fundamentals and results. On the other hand, however, even in
these areas the newest developments often do not rely on these results. Electrical
engineers essentially use systems like MathLab or Maple providing a convenient
environment to accomplish their applications. These systems, however, do not
provide mathematical exactness for the verification of results nor include the
newest theoretical results from the area. Consequently, knowledge in electrical
engineering is often propagated by reusing experimental results that proved to

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 371–380, 2007.
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be successfully. One reason is, that the use of exact mathematical results for
these applications is too expensive to be explicitely performed. Furthermore —
maybe also as a consequence of the above reason — there are theoretical results
that could be advantageously used in applications but are not sufficiently known
to electrical engineers.

In this situation mathematical knowledge management can contribute in
two ways. Firstly, the widespread use of mathematical knowledge management
systems incorporating electrical engineering could lead to a rediscovering and
broader use of theoretical results in applications by electrical engineers. Sec-
ondly, the support in using these results could help filling the gap between fun-
damentals and applications in the sense that more new applications are based
on mathematical fundamentals.

In this paper we focus on network theory [Unb93], in particular on network
stability. Network theory deals with the mathematical description, analysis, and
synthesis of electrical (continous and time-discrete) networks. For a realible ap-
plication such systems have to be stable, that is for an arbitrary (bounded) input
the output have to be bounded again. In case of highly-precise filters, however,
it turns out that checking for stability is often hard to accomplish numerically.
In this situation for example Schur’s theorem [Sch21] permits an easy method
to decide whether a network is stable by computing a chain of polynomials with
decreasing degrees. We shall discuss the mathematical fundamentals and preq-
uisites of Schur’s theorem and present a Mizar formalization of this theorem.

The plan of the paper is as follows. In the next section we give a brief in-
troduction to network theory focusing on the stability of networks and Schur’s
theorem [Sch21]. Then after a short review of the Mizar system [Miz07] we
present our formalization of Schur’s theorem in section 4. Finally, we discuss our
results, draw conclusions for mathematical knowledge management in electrical
engineering and give some hints for further work.

2 Networks and Their Stability

As mentiond in the introduction the stability of networks is one of the main is-
sues when dealing with the analysis and design of electrical circuits and systems.
In the following we briefly review definitions and properties of electrical systems
necessary to understand the application of Schur’s theorem to electrical net-
works. In electrical engineering stability applies to the input/output behaviour
of networks (see figure 1). For (time-) continous systems one finds the following
definition. For discrete systems an analogous definition is used.

Definition 1. ([Unb93])
A continous system is (BIBO-)1 stable, if and only if each bounded input signal
x(t) results in a bounded output signal y(t).

Physically realizable, linear time-invariant systems (LTI systems) can be de-
scribed by a set of linear equations [Unb93]. The behaviour of a LTI system
1 BIBO stands for Bounded Input Bounded Output.
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then is completely characterized by its impulse response h(t).2 If the impulse
response of auch a system is known, the relation between the input x(t) and the
output y(t) is given by the convolution integral

y(t) =

∞∫
−∞

x(τ)h(t − τ)dτ. (1)

Furthermore, a LTI system is stable, if and only if its impulse response h(t) is
absolute integrable, that is there exists a constant K such that

∞∫
−∞

|h(τ)| dτ ≤ K < ∞. (2)

In network and filter analysis and design, however, one commonly employs the
frequency domain rather than the time domain. To this end the system is de-
scribed based on its transfer function H(s). In case the Laplace transformation
is used we have3

H(s) =

∞∫
−∞

h(t)e−stdt. (3)

��� �x(t) y(t)

H(s)

h(t)

System

Fig. 1. LTI system with one input x(t) and one output y(t)

The evaluation of H(s) for s = jω — in case of convergence — enables
the qualitative understanding of how the system handles and selects various
frequencies, so for example whether the system describes a high-pass filter, low-
pass filter, etc. Now the necessary condition to demonstrate the stability of LTI
systems in the frequency domain reduces to show, that the jω-axis lies in the
Laplace transformation’s region of convergence (ROC).

For physically realizable LTI systems, such as the class of networks with con-
stant and concentrated parameters, H(s) is given in form of a rational function
with real coefficients, that is

H(s) =
ansn + . . . + a0

bmsm + . . . + b0
, ai, bi ∈ R. (4)

2 h(t) is the output of the system, when the input is the Dirac delta function δ(t).
3 Note that this is a generalization of the continous-time Fourier transformation.
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In this case the region of convergence can be described by the roots of the
denominator polynomial: If si = σi + jωi for i = 1, . . .m are the roots of bmsm +
. . . + b0, the region of convergence is given by

/{s} > max{σi, i = 1, . . .m}.
To check stability it is therefore sufficient, to show that the real part /{s} of
all poles of H(s) is smaller then 0. The denominator of H(s) is thus a so-called
Hurwitz polynomial.

The stability problem for discrete-time signals and systems can be analized
with the same approach. For a given discrete-time transfer function H(z) in
the Z- domain, it has to be checked whether the unit circle is contained in the
region of convergence. Hence for all poles zi of H(z) we must have |zi| < 1. Using
bilinear transformations [OS98]

z :=
1 + s

1− s
. (5)

it is thus sufficient to check whether the denominator of

H(z)|z:= 1+s
1−s

(6)

is a Hurwitz polynomial.
The practical examination of stability of highly-precise filters, however, turns

out to be very hard. In practical applications the poles of concern are usually
close to the axis s = jω or the unit circle |z| = ejω respectively. Thus numerical
determination of the poles is highly error-proning due to its rounding effects. In
digital signal processing in addition degrees of transfer functions tend to be very
high, for example 128 and higher in communication networks.

It is here that the theorem of Schur [Sch21] comes into play. Using the conju-
gate polynomial

f∗(x) := a∗
0 − a∗

1 x + a∗
2 x2 − . . . + (−1)na∗

n xn (7)

of a complex polynomial f(x) = a0 + a1x+ a2x
2 + . . . anxn a polynomial g(x) of

smaller degree is constructed, so that g(x) is a Hurwitz polynomial if and only
if f(x) is. The construction itself is fairly easy: it is essentially a division by a
linear polynomial.

Theorem 1. ([Sch21])
Let /{ξ} < 0. Then f(x) is a Hurwitz polynomial if and only if |f(ξ)| < |f∗(ξ)|
and

g(x) :=
f∗(ξ)f(x)− f(ξ)f∗(x)

x− ξ

is a Hurwitz polynomial.
The fact that the degree of g(x) is strictly smaller than the one of f(x) then
allows to check stability of networks without explicitely computing roots of poly-
nomials. Note that in addition ξ can always be chosen as −1, so that division can
actually be performed by shifting. This however is not widely known in the area
of network theory and we are not aware of any system using Schur’s theorem for
performing stability checks.
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3 The Mizar System

The logical basis of Mizar [RT01, Miz07] is classical first order logic extended,
however, with so-called schemes. Schemes introduce free second order variables,
in this way enabling amongothers the definition of induction schemes. In addition
Mizar objects are typed, the types forming a hierarchy with the fundamental type
set. The user can introduce new (sub)types describing mathematical objects
such as groups, fields, vector spaces or polynomials over rings or fields. To this
end the Mizar language provides a powerful typing mechanism based on adjective
subtypes [Ban03].

The current development of the Mizar Mathematical Library (MML) relies
on Tarski-Grothendieck set theory — a variant of Zermelo Fraenkel set theory
using Tarski’s axiom on arbitrarily large, strongly inaccessible cardinals [Tar39]
which can be used to prove the axiom of choice —, though in principle the Mizar
language can be used with other axiom systems also. Mizar proofs are written in
natural deduction style as presented in the calculus of [Jaś34]. The rules of the
calculus are connected with corresponding (English) natural language phrases so
that the Mizar language is close to the one used in mathematical textbooks. The
Mizar proof checker verifies the individual proof steps using the notion of obvious
inferences [Dav81] to shorten the rather long proofs of pure natural deduction.

The basic theories necessary for Schur’s theorem are already contained in
MML: Polynomials (over arbitrary rings) have been defined in [Mil01b]. The
original goal here was to prove the fundamental theorem of algebra. The complex
numbers have been introduced in [Byl90] as objects in their on right. To use the
theory of polynomials we need, however, the ring structure of complex numbers.
Fortunately, this has been established in [Mil01a]. Consequently, using Mizar we
were able to apply — besides the theory of polynomials — both general ring
(or field) theorems for complex numbers and special theorems valid for complex
numbers only.

4 Mizar Formalization of Schur’s Theorem

4.1 Some Preliminaries About Polynomials

Although the theory of polynomials in Mizar is rather well developed, division
of polynomials had not been introduced, yet. This, however, can be done (for
arbitray fields) in a straightforward way following the well-known literature.4
We defined two functors div and mod for the quotient and the remainder, re-
spectively. The keyword it denotes the object being defined. Note that Mizar
requires an existence and a uniqueness proof for functors. Here, however, these
have to be performed for the first definition only, because the definition of mod
employs solely arithmetics of polynomials — including the just defined functor
div. Therefore existence and uniqueness in this case is automatically derived by
the Mizar checker.

4 See for example [GG99].
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definition

let L be Field;

let p,q be Polynomial of L such that q <> 0_.(L);

func p div q -> Polynomial of L means

ex r being Polynomial of L st p = it *’ q + r & deg r < deg q;

end;

definition

let L be Field;

let p,q be Polynomial of L such that s <> 0_.(L);

func p mod q -> Polynomial of L equals

p - (p div q) *’ q;

end;

Divisibility of polynomials can then be introduced by the condition p mod q
= 0._(L), where 0._(L) is the zero polynomial, or by the equivalent condition
that there exists a polynomial h such that p = h * q. For our purposes it is
essential that a polynomial p(x) is divisible without remainder by the linear
polynomial x− z, if z is a root of p(x).5 It was therefore necessary to show that
for every root z of a polynomial p(x) the polynomial x−z is a divisor of p(x). To
do so, we introduced the polynomials rpoly(k,z) = xk − zk and qpoly(k,z)
= xk−1 +xk−2 ∗ z +xk−3 ∗ z2 + ...+x ∗ zk−2 + zk−1. Note that for k > 1 we have
rpoly(1,z) * qpoly(k,z) = rpoly(k,z), which allows for the construction of
a polynomial h such that r(1,z) * h = p. We thus get

theorem

for L being Field

for p being Polynomial of L

for z being Element of L st z is_a_root_of p holds rpoly(1,z) divides p;

Note again, that this property is shown for polynomials over arbitrary fields.
In the next section when dealing with Schur’s criterium, we shall use the complex
number version of this theorem.

4.2 Schur’s Theorem

Using the general Mizar theory of polynomials for our purposes, that is for
polynomials over the complex numbers, is straightforward. We just instantiate
the parameter L describing the coefficient domain with the field of complex
numbers F_Complex from [Mil01a]. So an object of type

Polynomial of F_Complex

combines the theory of polynomials with the one of complex numbers. Hence
for such objects we have available both the predicate is_root_of defined for
polynomials and the functor Re giving the real part of a complex number. This
allows for the following definition of Hurwitz polynomials.

5 Compare theorem 1 in section 2.
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definition

let f be Polynomial of F_Complex;

attr f is Hurwitz means

for z being Element of F_Complex st z is_a_root_of f holds Re(z) < 0;

end;

The examination of polynomials with a degree smaller or equal then 1 is
rather uncomplex. Constant polynomials are not Hurwitz, except for the zero
polynomial which is. A linear polynomial p(x) = x − z obviously is Hurwitz if
and only if the real part of z is smaller than 0. This condition carries over to
arbitrary polynomials of degree 1. Hence we get the following three theorems for
the basic cases.

theorem

0_.(F_Complex) is non Hurwitz;

theorem

for z being Element of F_Complex st z <> 0.F_Complex

holds z * 1_.(F_Complex) is Hurwitz;

theorem

for z1,z2 being Element of F_Complex st z1 <> 0.F_Complex

holds z1 * rpoly(1,z2) is Hurwitz iff Re(z2) < 0;

In addition we proved some other properties of Hurwitz polynomials needed
later, so for example that f ∗ g is Hurwitz if and only if f and g are Hurwitz or
that for a complex number z = 0 we have z ∗ f is Hurwitz if and only if f is
Hurwitz.

To prove Schur’s theorem for the general case we needed to introduce the con-
jugate of a complex polynomial as given by equation (7). This is accomplished by
a Mizar functor *’ defining the coefficients of the conjugated polynomial appro-
priately.6 For that we use the functor power(G) which describes exponentiation
for arbitrary groups G, here again instantiated with F_Complex, the field of com-
plex numbers. Note that after instantiating G with F_Complex the resulting type
of the functor power(F_Complex) is automatically accomodated, so that it is no
problem multiplying its result with another complex number.

definition

let f be Polynomial of F_Complex;

func f*’ -> Polynomial of F_Complex means

for i being Element of NAT holds

it.i = power(F_Complex).(-1.F_Complex,i) * (f.i)*’;

end;

Thus prepared we could already state Schur’s theorem in Mizar. However, to
shorten writings we decided to introduce another functor describing the nomi-
nator polynomial of Schur’s construction. The functor eval describes evaluation
of polynomials.

6 Note that the functor *’ is then overloaded, because it also stands for conjugation
of complex numbers as can be seen in the following definition.
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definition

let f be Polynomial of F_Complex;

let z be Element of F_Complex;

func F*(f,z) -> Polynomial of F_Complex equals

eval(f*’,z) * f - eval(f,z) * f*’;

end;

Taking into account that the Mizar functor |. .| gives the absolute value
of complex numbers, we then get the following formulation of Schur’s theorem.
Note again that rpoly(1,z) is the polynomial p(x) = x− z.

theorem

for f being Polynomial of F_Complex st deg(f) >= 1

for z being Element of F_Complex

st Re(z) < 0 & |.eval(f,z).| < |.eval(f*’,z).|

holds f is Hurwitz iff F*(f,z) div rpoly(1,z) is Hurwitz;

The proof of the theorem relies on a thorough examination of the relation
between the real part /(z) of a complex number z and the values of |f(z)| and
|f∗(z)| in case f is a Hurwitz polynomial. It turns out that whether /(z) is
smaller or greater than 0 completely determines which value |f(z)| or |f∗(z)| is
greater. This allows later to argue about the roots of the nominator polynomial,
that is of the polynomial F*(f,z).

theorem

for f being Polynomial of F_Complex st deg(f) >= 1 & f is Hurwitz

for z being Element of F_Complex

holds (Re(z) < 0 implies |.eval(f,z).| < |.eval(f*’,z).|) &

(Re(z) > 0 implies |.eval(f,z).| > |.eval(f*’,z).|) &

(Re(z) = 0 implies |.eval(f,z).| = |.eval(f*’,z).|);

The corresponding proof is rather technical. In Mizar, however, the applica-
tion of theorems for complex numbers has been automatized in the sense that a
number of basic theorems are automatically applied, in this way shortening the
proof [NB04]. In addition the Encyclopedia of Mathematics in Mizar (EMM)
collecting theorems of a theory — in this case concerning complex numbers —
originally spread over the whole repository produced a kindly working environ-
ment to accomplish the task.

Note also that this theorem implies that even for polynomials with degree
> 1, it is not always necessary to reduce the problem of stability to a basic case:
If we find a complex number z with /(z) < 0 such that |f(z)| ≥ |f∗(z)| we
immediately get that f is not a Hurwitz polynomial.

theorem

for f being Polynomial of F_Complex st deg(f) >= 1

holds (ex z being Element of F_Complex

st Re(z) < 0 & |.eval(f,z).| >= |.eval(f*’,z).|)

implies f is non Hurwitz;

The rest of the proof basically applies the theorem from above two times, once
for each direction. We first proved the following, more general version of Schur’s
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theorem from [Sch21]: For complex numbers z1 and z2 such that |z1| > |z2| and
a complex polynomial f(x) with degree ≥ 1 holds f(x) is a Hurwitz polynomial
if and only if g(x) = z1 ∗ f(x) − z2 ∗ f∗(x) is a Hurwitz polynomial: Because of
|z1| > |z2| we have now |f(x)| ≥ |f∗(x)|, if /(x) ≥ 0, and hence |z1 ∗ f(x)| >
|z2 ∗f∗(x)|, which shows the first direction. For the other direction we only note,
that f(x) = z′1 ∗ g(x)− z′2 ∗ g∗(x) with

z′1 =
z∗1

|z1|2 − |z2|2
and z′2 = − z2

|z1|2 − |z2|2
,

so that |z′1| > |z′2| finishes the proof.
From this Schur’s theorem easily follows by instantiating z1 with f∗(z) and

z2 with f(z) giving essentially the functor F*(f,z) from above. Note that we
here need in addition that the denominator polynomial p(x) = x − z, that is
rpoly(1,z), divides the nominator polynomial f∗(z) ∗ f(x)− f(z) ∗ f∗(x), that
is F*(f,z). This, however, is ensured by the fact that z is a root of f∗(z)∗f(x)−
f(z) ∗ f∗(x) and the — automatically available — complex number version of
the main theorem of section 4.1.

So this part of the proof requires both arithmetics — including conjugates
— and abstract values of complex numbers and arithmetics of polynomials over
complex numbers. In Mizar, as already mentioned, this is achieved by instan-
tiating the general theory of polynomials with the field of complex numbers.
Then of course the absolute value, defined originally for complex numbers, is
available for the coefficients of complex polynomials, also. Consequenly, the just
described proof steps could be accomplished based on these two theories without
other preparations or additional lemmas.

5 Conclusions

In this paper we have considered electrical engineering as an application area
for mathematical knowledge management. We have focused on stability theory
of networks and have shown by a Mizar formalization of Schur’s theorem that
interesting mathematical knowledge in electrical engineering can be successfully
handled with mathematical knowledge management systems.

We believe that both electrical engineering and mathematical knowledge man-
agement can benefit from a further development of collaboration in the area of
mathematical knowledge. The combination of mathematical knowledge man-
agements systems and repositories with analysis and design tools for electrical
networks can provide electrical engineers with a thorough mathematical basis for
their work. In addition this would lead also to the use of less known theoretical
results, such as for example Schur’s theorem, in new applications.

For mathematical knowledge management electrical engineering can serve as
an additional test bed, in which new developments can be tried out. And, of
course, in this way a whole group of potential new users of mathematical knowl-
edge management systems could be addressed.
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Abstract. The disambiguation approach to the input of formulae en-
ables the user to type correct formulae in a terse syntax close to the usual
ambiguous mathematical notation. When it comes to incorrect formulae
we want to present only errors related to the interpretation meant by
the user, hiding errors related to other interpretations (spurious errors).

We propose a heuristic to recognize spurious errors, which has been
integrated with the disambiguation algorithm of [6].

1 Introduction

In [6] we proposed an efficient algorithm for parsing and semantic analysis of am-
biguous mathematical formulae. The topic is particularly relevant for the Mathe-
matical Knowledge Management community since every mathematical assistant
sooner or later faces the need of letting its user type formulae. When the user
is not acquainted with a system or its library—as it happens when using math-
ematical search engines [1,3,7]—we cannot assume the knowledge of a language
other than the usual corpus of ambiguous mathematical notation.

Our algorithm mimics a mathematician behavior of disambiguating a for-
mula by choosing the only possible interpretation that has a meaning in the
current context. However when a formula is not correct, every interpretation is
“equally” meaningless. Nevertheless, a mathematician seems to be able to un-
derstand which interpretation is more likely, spotting the genuine errors in the
formula.

Example 1. If f is known to be a real-valued function on vectors, the formula
f(α · x + β · y + z) = α · f(x) + β · f(y) + z is not correct and a mathematician
would probably assert that z is not used properly in the right hand side of the
equation. Instead, the algorithm of [6] would return several alternative error
messages such as: in "f(α · x−→+ . . .−→+z) = . . .": x is a vector, but is used
as a scalar.

A possible way out is designing a disambiguation algorithm able to rate the
possible interpretations so that the one expected by a mathematician ranks
first. Also in those cases were several possible interpretations are meaningful,
this approach is necessary to choose automatically among them or to ask the
� Partially supported by the Strategic Project “DAMA: Dimostrazione Assistita per

la Matematica e l’Apprendimento” of the University of Bologna.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNAI 4573, pp. 381–392, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



382 C. Sacerdoti Coen and S. Zacchiroli

user providing a sensible default. In [2] we proposed such an algorithm that was
designed to tackle the case of correct formulae with multiple interpretations. In
this paper we address the case of formulae for which no correct interpretation
can be found.

Consider again Example 1. We need to find a criterion to identify the given
error message as spurious, i.e. as an error relative to an interpretation that is
not the one expected by the user. Note that a formula can contain more than
one genuine error: they are all the errors in the expected interpretation of the
formula. The heuristic criterion we propose is the following.

Criterion 1 (Spurious error detection). An error is spurious when it is
localized in a sub-formula F such that there is an alternative interpretation of
the whole formula such that no error is localized in F .

Intuitively an error is spurious when no genuine error is spatially co-located with
it, i.e. genuine errors are to be found elsewhere. In Example 1 if we interpret all
the operators in the left hand side as operations on vectors we do not obtain
any error message in the left hand side. Hence the genuine error must be in the
right hand side.

The main goal of this paper is the integration of spurious error detection in
the efficient algorithm proposed in [6]. We proceed as follows. In Section 2 we
formalize the specification of the class of disambiguation algorithms. In Section 3
we provide an improved description of the algorithm proposed in [6], proving
that it is a member of the disambiguation algorithm class, while in Section 4 we
extend the algorithm with spurious error detection.

2 Disambiguation Algorithm Specification

Traditionally semantic analysis maps an abstract syntax tree (AST) of a formula
to a term—its semantics—in some calculus. In an ambiguous setting, semantic
analysis rather maps an AST to a set of terms; the set can then be rated accord-
ing to some criterion to identify the best semantics. To represent in a concise way
a set of terms sharing a common structure, we use a term containing non linear
placeholders in the spirit of [4,5]. We say that a term t′ is an instantiation of t
if it is obtained filling zero or more of its placeholders. For instance ?1 =?2+?2

represents the set of terms {t1 = t2 + t2 | t1, t2 terms}; ?1 = 0 + 0 and 0 = 0 + 0
are two instances belonging to that set.

Lemma 1. If t1 is an instance of t2 then the set of instances of t1 is a subset
of the set of instances of t2.

Proof. By definition of instantiation. %&

Among all the terms that are semantics of a given AST, we are interested only
in those that are well-typed. Thus, we are interested in terms with placeholders
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only when they denote non-empty sets of well-typed instantiations. We assume
the existence of a refiner R(·), that is a function from terms to outcomes. An
outcome is either the distinguished symbol ✓ or an informative error message.
The latter is returned when the set of well-typed instantiations of the input term
is (known to be) empty. For instance R(f(?1) = 1) = ✓ whereas R(f(?1) =
f + 1) = "f is a function, but is used as a scalar". In the latter case
the error message is relevant to every possible instantiation; in the former there
is no guarantee that every possible instantiation is well-typed. Still, the following
lemma holds.

Lemma 2. A term t without placeholders is well-typed iff R(t) = ✓

Proof. t is the only instance of itself thus, by definition of R(·), R(t) = ✓ iff t is
not well-typed. %&

We are now ready to describe the specification of a disambiguation algorithm
for an AST t. Let Dom (t) be the set of occurrences of overloaded symbols in t.
For each s ∈ Dom (t), let Ds be the set of possible choices for s.

An interpretation φ for t is a partial function Dom (t) 0 s �→ us ∈ Ds.
Intuitively a (partial) interpretation restricts the set of semantics of t resolving
the overloading for the occurrences in the domain of φ. When an interpretation
is a total function a unique semantics is determined. To formalize this intuition
we associate to a partial interpretation φ a term with placeholders �t�φ, where
all (applications of) occurrences of symbols not in the domain of φ have been
interpreted as fresh placeholders. For instance, when φ = [+1 �→ point-wise sum],
�(f+g)(x)=f(x)+g(x)�φ denotes (f +g)(x) =?1. Note that the arguments of the
second occurrence of plus have been omitted.

We denote with Φt the set of all (partial) interpretations for t and with Φ̂t

the set of all total interpretations. We call ⊥ the function everywhere undefined
and we denote as φ[s �→ u] the function that maps s to u and behaves as φ
elsewhere. The set of interpretations is ordered by the usual order on partial
functions: φ1 1 φ2 iff ∀s, φ1(s) = u ⇒ φ2(s) = u. The minimum of Φ according
to 1 is ⊥.

Lemma 3. φ1 1 φ2 iff �t�φ2 is an instance of �t�φ1 .

Proof. By structural induction on t and by cases on the definition of �·�· Since,
for the sake of brevity, we omitted its definition, the present lemma can be seen
as a required property of �·�· %&

Together with Lemma 1, Lemma 3 confirms the intuition that the more over-
loading is resolved, the smaller the set of semantics.

A disambiguation algorithm partitions the set of semantics of an AST into
classes of well-typed terms and classes of terms characterized by the same typing
error. Since Lemma 2 holds only for placeholder-free terms, all terms in the well-
typed class must have no placeholders. We will use the notion of cover to grasp
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partitions at the interpretation level, and the notion of typing cover to grasp
well-typedness.

We say that a set of interpretations S covers a set of interpretations T , written
S � T , when ∀φ ∈ T, ∃!φ′ ∈ S, φ′ 1 φ.

Lemma 4. If S � T then for each φ1 ∈ T there exists an unique φ2 ∈ S such
that �t�φ1 is an instance of �t�φ2 .

Proof. By Lemma 3 and the definition of cover. %&

Corollary 1. If S� Φ̂t and φ1, φ2 ∈ S, φ1 = φ2 then the set of instances of �t�φ1

is disjoint from the set of instances of �t�φ2 .

Proof. Suppose per absurdum that u is an instance of both �t�φ1 and �t�φ2 . Let
u′ ∈ Φ̂t be an instance of u. By Lemma 4 φ1 = φ2, but by hypothesis we know
φ1 = φ2. %&

Theorem 1. S � Φ̂t iff {{u | u is an instance of �t�φ} | φ ∈ S} is a partition
of {u | ∃φ ∈ Φ̂t, u = �t�φ} (i.e. the set of all semantics of t).

Proof. The forward implication is by Lemma 4 and Corollary 1. For the converse
implication consider an arbitrary but fixed φ ∈ Φ̂t. By hypothesis there is a
unique φ′ ∈ S such that u = �t�φ is an instance of �t�φ′ . Thus S � Φ̂t. %&

We say that a set of interpretations A′ is a refinement of a set of interpretations
A, written A�A′ when A � A′ and for all u ∈ Φ̂t such that there is a φ ∈ A
such that u is an instance of �t�φ there exists a unique φ′ ∈ A′ such that u is an
instance of �t�φ′ .

Theorem 2. If A ∩B = ∅, A ∪B � Φ̂t and A�A′, then A′ ∪B � Φ̂t.

Proof. By Theorem 1 {{u | u is an instance of �t�φ} | φ ∈ A∪B} partitions the
set of all semantics of t. {{u | u is an instance of �t�φ} | φ ∈ A′ ∪B} partitions
the same set by definition of A�A′, where the requirement A�A′ is fundamental
to avoid interference with B. Hence the thesis by Theorem 1. %&

A set S of interpretations is said to be typing when for all φ ∈ S if R(�t�φ) = ✓

then φ ∈ Φ̂t. In particular a typing cover is a cover S � Φ̂t that is also typing.
Intuitively a disambiguation algorithm returns a typing cover equipped with
rating information for its interpretations (that will be called classification).

Theorem 3. For each typing cover S and for each term u in the set of all
semantics of t, u is well-typed iff R(�t�φ) = ✓ where φ is the only interpretation
in S such that u is an instance of �t�φ.

Proof. IfR(�t�φ) = ✓ by definition ofR(·). Otherwise by Lemma 2 and definition
of typing cover. %&

We also expect something more that cannot be grasped formally: if u is not
well-typed then the error message for R(�t�φ) should also be relevant for u. This
property is inherited from the refiner.
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Lemma 5. {⊥}� Φ̂t. It is typing iff R(�t�⊥) = ✓ or Dom (t) = ∅.

Proof. Trivial by definition of Φ̂t and R(·). %&

To rate covers, we assume that to each interpretation φ is associated a rate ρ(φ).
A rate is an element of a partially ordered set (A,2), such that ρ(φ1) 2 ρ(φ2)
iff �t�φ1 is more likely to be the intended meaning of t than �t�φ2 .

Formally, a disambiguation algorithm takes as input an AST t and returns a
typing and covering classification Σ. A classification Σ is a set of tuples 〈φ, o, r〉
such that:

1. for all 〈φ, o, r〉 ∈ Σ, o = R(�t�φ), and r belongs to some partially ordered set
(B,2);

2. for all 〈φ1, o1, r1〉, 〈φ2, o2, r2〉 ∈ Σ, if φ1 = φ2 then o1 = o2 and r1 = r2.

A classification Σ is a covering classification if SΣ = {φ | 〈φ, o, r〉 ∈ Σ} is a
cover; it is a typing classification when SΣ is typing.

We choose for B the set {�, �, �} × A ordered lexicographically by the orders:
� ≤ � ≤ � and 2.

Every classification can be partitioned into the set of (so far) successful and
the set of failing interpretations as follows:

(Σ)✓ = {〈φ, o, r〉 ∈ Σ | o = ✓}
(Σ)✗ = Σ \ (Σ)✓

Example 2 (Naive Disambiguation Algorithm). The naive disambiguation algo-
rithm (NDA for short) is the disambiguation algorithm that, when applied to
an AST t, computes the typing and covering classification Σ = {〈φ, o, r〉 | φ ∈
Φ̂t, o = R(�t�φ), r = ρ′(o, φ)} where:

ρ′(o, φ) =

{
〈�, ρ(φ)〉 if o = ✓

〈�, ρ(φ)〉 otherwise

The rating function ρ′(·, ·) gives priority to successes over failures; outcomes
being equal, it falls back to the interpretation rating.

We call this algorithm “naive” since its computes the typing cover SΣ =
Φ̂t �Φ̂t of maximum cardinality. Its execution is computationally expensive since
it invokes the refiner |SΣ | = |Φ̂t| =

∏
s∈Dom (t) |Ds| times.

Example 3 (NDA execution). Consider the (non-typable) AST corresponding to
f(α · x+ β · y+ z) = α · f(x) + β · f(y) + z, where + is left-associative, x, y, z are
globally declared as real vectors, α, β are reals, and f is a real-valued function
on vectors. The symbol “+” is overloaded on scalar and vector sums; “·” is
overloaded on scalar and external products.

NDA returns a classification consisting of 28 error messages (not necessarily
unique), where 2 are the possible choices for each occurrence of overload symbols
and 8 is the number of occurrences of “·” and “+”. The “expected” error message
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"z is a vector, but is used as a scalar" is drowned in a sea of errors
like (re-ordered here for reader’s sake):

– "x is a vector, but is used as a scalar"
– "y is a vector, but is used as a scalar"
– "z is a vector, but is used as a scalar"
– "α · x is a vector, but is used as a scalar"
– "β · y is a vector, but is used as a scalar"
– "α · x + β · y is a vector, but is used as a scalar"
– ...
– "f(x) is a scalar, but is here used as a vector"
– "f(y) is a scalar, but is here used as a vector"
– ...

We can only hope that ρ(·) does a great job ranking first the expected inter-
pretation. In practice we are not aware of any rating function that performs well
looking only at the interpretations.

3 An Efficient Disambiguation Algorithm

In terms of efficiency we can do better than NDA. The key observation for
improvement is that a single invocation of the refiner on a term with placeholders
can rule out the whole set of its instances. More precisely, if the refinement of
such a term fails, all of its instances are not well-typed (and will fail in the
same way). Thus, it is not necessary to compute the largest typing and covering
classification as NDA does: intuitively, the smaller the classification, the more
efficient the algorithm.

A typing and covering classification can be built incrementally starting from
a covering classification. Indeed if a covering classification Σ is not typing it
must contain a partial interpretation φ ∈ S(Σ)✓ . A more precise classification
can be obtained replacing the interpretation φ with a set of more instantiated
interpretations S such that S � {φ}. Since φ1 1 φ for each φi ∈ S, the domain
of φ1 (a subset of Dom (t)) is bigger than the domain of φ. Thus the refinement
process ends in a finite number of steps since Dom (t) is finite; moreover it yields
a typing classification.

To increase efficiency, we can enforce the invariant that all interpretations φ ∈
S(Σ)✓ share a common domain. Thus at each step we have to extend at once the
domain shared by all φs. Let Σ be a classification such that the interpretations
in SΣ are defined on the same domain and let s ∈ Dom (t). We define:

Σs = {〈φ, o, r〉 | ∃φ′ ∈ SΣ , ∃u ∈ Ds, φ = φ′[s �→ u], o = R(�t�φ), r = ρ′(o, φ)}

Lemma 6. Let Σ be a classification such that the interpretations in SΣ are
defined on the same domain and let s ∈ Dom (t). Σ�Σs.
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Proof. By construction of Σs and definition of �. %&

The refinement process outlined above can now be formally described. At the
n-th step we have the covering (not typing) classification Σn. Choosing s outside
the domain of the φs in S(Σn)✓ , we obtain the next covering classification Σn+1 =
((Σn)✓)s ∪ (Σn)✗. Since the functions in S(Σn+1)✓ are more defined that those
in S(Σn)✓ the most natural choice for the initial covering classification is Σ0 =
{〈⊥, o, r〉 | o = R(�t�⊥), r = ρ′(o,⊥)〉}.

Example 4 (Refinement process). Consider the AST of Example 2. Picking oc-
currences s ∈ Dom (t) according to the pre-visit order of the AST, the first steps
of the refinement process yield the following covering classifications (where for
the sake of brevity errors have been substituted by ✗):

Σ0 = {〈φ1, ✓, 〈�, ρ(φ1)〉〉} where �t�φ1 = f(?1) =?2 and φ1 = ⊥
Σ1 = {〈φ11, ✓, 〈�, ρ(φ11)〉〉, �t�φ11 = f(?1

−→+z) =?2

〈φ12, ✗, 〈�, ρ(φ12)〉〉} �t�φ12 = f(?1 + z) =?2

Σ2 = {〈φ111, ✓, 〈�, ρ(φ111)〉〉, �t�φ111 = f(?1
−→+?2

−→+z) =?3

〈φ112, ✗, 〈�, ρ(φ112)〉〉, �t�φ112 = f(?1+?2
−→+z) =?3

〈φ12, ✗, 〈�, ρ(φ12)〉〉} �t�φ12 = f(?1 + z) =?2

Σ3 = {〈φ1111, ✓, 〈�, ρ(φ1111)〉〉, �t�φ1111 = f(α−→· x−→+?1
−→+z) =?2

〈φ1112, ✗, 〈�, ρ(φ1112)〉〉, �t�φ1112 = f(α · x−→+?1
−→+z) =?2

〈φ112, ✗, 〈�, ρ(φ112)〉〉, �t�φ112 = f(?1+?2
−→+z) =?3

〈φ12, ✗, 〈�, ρ(φ12)〉〉} �t�φ12 = f(?1 + z) =?2

· · ·

Theorem 4 (Correctness of the Refinement Process). The above refine-
ment process implements a disambiguation algorithm, i.e. for each AST t,
Σ|Dom (t)| is a covering and typing classification.

Proof. By induction on |Dom (t)| we prove that Σ|Dom (t)| is covering.
Base case. By Lemma 5 Σ0 is a covering classification.
Inductive case. Let Σn be a covering classification per inductive hypothesis. By
definition Σn+1 = ((Σn)✓)s ∪ (Σn)✗. By Theorem 2 and Lemma 6, Σn+1 is
covering.

To prove that Σ|Dom (t)| is typing the reader can prove by induction that all
the φs in S(Σn)✓ are defined on a subset of Dom (t) of cardinality n. The thesis
follows trivially. %&

The above refinement process is parametric in how the next symbol s ∈ Dom (t)
is chosen at each step. In [6] we discussed the implication of such a choice on the
computational complexity in terms of numbers of refiner invocations. The best
choice corresponds to a pre-visit of the abstract syntax tree t.
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We now present the efficient disambiguation algorithm (EDA for short) of [6].
It proceeds by recursion on Domlist(t), which is the list of overloaded symbol
occurrences in t obtained in a pre-visit traversal.

f(Σ, l) =
{

Σ if l = []
f((Σs)✓, tl) ∪ (Σs)✗ if l = s :: tl

EDA(t) = f((Σ0)✓,Domlist(t)) ∪ (Σ0)✗

Theorem 5 (Correctness of EDA). EDA implements a disambiguation al-
gorithm.

Proof. By Theorem 4 it is sufficient to prove that the classification returned by
EDA is the same returned by the refinement process. We observe that

Σn = ((Σn−1)✓)sn ∪ (Σn−1)✗

= ((((Σn−2)✓)sn−1 ∪ (Σn−2)✗)✓)sn ∪ (((Σn−2)✓)sn−1 ∪ (Σn−2)✗)✗

= ((((Σn−2)✓)sn−1)✓)sn ∪ (((Σn−2)✓)sn−1)✗ ∪ (Σn−2)✗ (†)
= (((((Σn−2)✓)sn−1)✓)sn)✓∪

(((((Σn−2)✓)sn−1)✓)sn)✗ ∪ (((Σn−2)✓)sn−1)✗ ∪ (Σn−2)✗

= . . .
= ((· · · (((((Σ0)✓)s1)✓)s2)✓ · · ·)sn)✓∪ (‡)

((· · · (((((Σ0)✓)s1)✓)s2)✓ · · ·)sn)✗ ∪ · · · ∪ (((Σ0)✓)s1)✗ ∪ (Σ0)✗

where (†) is justified by the two identities ((Σ)✗)✓ = ∅ and ((Σ)✗)✗ = (Σ)✗. The
reader can verify that the pseudo-code of EDA is a recursive formulation of (‡)
for n = |Dom (t)|. %&

Example 5 (EDA execution). Consider the AST of Example 2. EDA yields a
smaller classification, containing “just” 6 error messages:

1. "in f(?1 + z) =?2: z is a vector, but is used as a scalar"
2. "in f(?1+?2

−→+z) =?3: ?1+?2 is a scalar, but is used as a vector"
3. "in f(α · x−→+?1

−→+z) =?2: x is a vector, but is used as a scalar"
4. "in f(α−→· x−→+β · y−→+z) =?1: y is a vector, but is used as a scalar"
5. "in f(α−→· x−→+β−→· y−→+z) =?1 + z: z is a vector, but is used as a

scalar"
6. "in f(α−→· x−→+β−→· y−→+z) =?1

−→+z: ?1 + z is a vector, but is used as a
scalar"

where (5) is the expected one, while the other errors are spurious. The rating of
errors is unchanged with respect to Example 2.

4 A Humane Disambiguation Algorithm

We look for a restriction of Criterion 1 which can be integrated in EDA. The
characteristic of EDA (with respect to the general refinement process) is the
pre-visit ordering of Dom (t). This implies that:



Spurious Disambiguation Error Detection 389

a. to interpret an occurrence s, every occurrence s′ that precedes s in pre-order
must be interpreted too;

b. when an interpretation φ yields an error, every occurrence s′ that follows
in pre-order the last occurrence s added to the domain of φ will not be
interpreted by any interpretation φ′ 3 φ.

Together, (a) and (b) imply that not every sub-formula F will be interpreted
in any possible way. Actually, (b) is a consequence of (a). This imposes a non
negligible restriction of Criterion 1 for efficiency reasons, yielding:

Criterion 2 (Efficient spurious error detection). An error message relative
to an interpretation φ of an AST t is spurious iff there exists an occurrence
s ∈ Dom (t) and an interpretation φ′ such that:

1. φ(s) = φ′(s);
2. φ′(s′) = φ(s′) for all s′ that precedes s in pre-order;
3. φ′ is total on the occurrences of overloaded symbols occurring in the sub-tree

rooted at s;
4. R(�t�φ′ ) = ✓.

Dropping (2)—imposed by (a)—from the conditions above we obtain a more
formal writing of Criterion 1. We now address the issue of integrating Criterion 2
in EDA.

f(Σ, l), the core of EDA, does not work directly on t, but rather on the
list l, which is an abstraction of the occurrences of overload symbols in t. In
l the tree-structure of t has been lost. As a consequence, without changing
its input, we cannot make f recognize spurious errors using Criterion 2. As a
solution we could make f work by recursion on t by integrating in f a pre-
visit traversal. Still, we prefer to avoid binding f to the data type of AST
of formulae and to keep separate the construction of Dom (t) from the actual
disambiguation.

Therefore we introduce the new Domtree(t) datatype which is a tree represen-
tation of Dom (t). Domtree(t) is a tree which contains only the nodes s ∈ Dom (t)
and preserves the ancestor-descendent relation of t. As a concrete representation
of Domtree(t) we adopt the well-known first-child/next-sibling representation.
This representation allows to implement straightforwardly a pre-visit of the tree
recognizing when all children of a given node have been traversed. Note that the
pre-visit order is imposed by the efficiency analysis given in [6] and recognizing
the end of children traversal is necessary for Criterion 2.

We call the algorithm that recognizes spurious errors the humane disambigua-
tion algorithm (HDA for short). It proceeds by recursion on Domtree(t) and, at
the end of children traversal, lowers the rate of spurious errors. The pseudo code
of HDA is given below:
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g(Σ, t) =

⎧⎪⎪⎨⎪⎪⎩
Σ if t = nil

g((Σ1)✓, b) ∪ p((Σ1)✓, (Σ1)✗ ∪ (Σs)✗) if t =
s→b
↓
c

where Σ1 = g((Σs)✓, c)

p(Σok , Σerr) =
{

Σerr if Σok = ∅
{〈φ, o, r〉 | 〈φ, o, 〈m, p〉〉 ∈ Σerr , r = 〈�, p〉} if Σok = ∅

HDA(t) = (Σ′)✓ ∪ p((Σ′)✓, (Σ′)✗ ∪ (Σ0)✗)
where Σ′ = g((Σ0)✓,Domtree(t))

g has the same role f had in EDA, while p(·, ·) (mnemonic for “prioritize”) lowers
the rate of spurious errors to �, which is the lowest rating.

Theorem 6 (Correctness of HDA)

1. HDA implements a disambiguation algorithm.
2. An error in a classification returned by HDA is spurious according to Crite-

rion 2 iff it is rated 〈�, ρ(φ)〉.

Proof. We just give a sketch of the proof, which is involved due to the complexity
of the code.

(1) By Theorem 5 it is sufficient to prove that the classification returned by
HDA is equal to the classification returned by EDA up to rates. Since both
algorithms perform a pre-visit of the input tree, we can consider “parallel” exe-
cutions of them. At the nth step EDA is called on the list sn :: tl while HDA is

called on the tree
sn→b
↓
c

. The nodes that EDA will encounter processing tl are

the same (and in the same order) of those HDA will encounter processing c at
first and then b. The thesis is reduced to a proof by induction on the length of
tl that f((Σsn)✓, tl) is equal to (g((Σsn)✓, c))✗ ∪ g(g((Σsn)✓, c)✓, b) up to rates.

(2) Recursion is never performed on elements of the current classification
corresponding to errors. Thus once an error has been down-rated by p(·, ·) its
rating will never be raised again.

Suppose that at a given iteration p(·, ·) lowers the rating of an error ε rela-
tive to an interpretation φ ∈ (Σs)✗ ∪ (g((Σs)✓, c))✗. We interpret that as ε being

located in
s
↓
c
. The set S̃ = S(g((Σs)✓,c))✓ is not empty since ε has been down-rated.

We consider now two cases: either there exists φ′ ∈ S̃ such that φ(s) = φ′(s)
or not. In the former case s and φ′ satisfy all the requirements of Criterion 2.
In the latter case let φ′ ∈ S̃. Let s′ ∈ c be the last occurrence that follows s

in pre-order such that φ(s′) = φ′(s′). Consider now the recursive call on
s′→b′
↓
c′

and iterate the above reasoning. Since this time φ(s′) = φ′(s′), ε is now properly
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down-rated according to Criterion 2. When the recursive call on c returns ε is
still correctly down-rated and p(·, ·) leaves its rate unchanged. %&

Example 6 (HDA execution). Consider again the AST of Examples 2 and 5. The

first recursive invocation is g(Σ, τ) where: Σ = {〈⊥, ✓, 〈�, ρ(⊥)〉〉} and τ =
+→b
↓
c

.

g computes

Σs = {〈φ11, ✓, 〈�, ρ(φ11)〉〉, where �t�φ11 = f(?1
−→+ z) =?2

〈φ12, ✗, 〈�, ρ(φ12)〉〉} �t�φ12 = f(?1 + z) =?2

and then calls itself recursively on (Σs)✓ and c yielding

Σ1 = {〈φ11111, ✓, 〈�, ρ(φ11111)〉〉, where �t�φ11111 = f(α−→· x−→+β−→· y−→+z) =?1

〈φ11112, ✗, 〈�, ρ(φ11112)〉〉, �t�φ11112 = f(α−→· x−→+β · y−→+z) =?1

〈φ1112, ✗, 〈�, ρ(φ1112)〉〉, �t�φ1112 = f(α · x−→+?1
−→+z) =?2

〈φ112, ✗, 〈�, ρ(φ112)〉〉} �t�φ112 = f(?1+?2
−→+z) =?3

Since (Σ1)✓ is not empty, all the errors in (Σs)✗ and (Σ1)✗ are recognized as
spurious and their rating is lowered to �. In particular the new rating for the
error associated to φ12 will remain the same in the final classification returned
by HDA. Errors coming from (Σ1)✗ were already recognized as spurious; this is
not always the case.

Eventually HDA yields the same errors of Example 5, but rated differently: the
expected one—error (5)—is rated 〈�, ρ(φ5)〉 (ranking first) while the remaining
spurious errors are rated 〈�, ρ(φi)〉.

5 Conclusions

In this paper we proposed a heuristic criterion to detect spurious errors in am-
biguous formulae. An error is spurious when it is not relative to the formula
interpretation expected by the user. We integrated the criterion in the efficient
disambiguation algorithm of [6].

We also believe that the specification of a disambiguation algorithm (Sec-
tion 2) and the description of our efficient disambiguation algorithm (Section 3)
are an improvement over previous descriptions in the literature.

We have implemented the proposed algorithm in the Matita proof assistant [2]
and experimented with it in an ongoing formal development of Lebesgue’s dom-
inated convergence theorem in an abstract setting. Actually this formalization
effort has motivated the study of spurious error identification since in the ab-
stract setting there are plenty of overloaded operators and it was not unusual to
be faced with too many error messages to be useful. In the current implemen-
tation in Matita we have decided to hide spurious errors from the user, unless
explicitly asked for. This choice has decreased dramatically the amount of error
messages, but in the general case is still possible to be faced with more than 1
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genuine (i.e. not spurious) error. The problem of how effectively present mul-
tiple error messages to the user belongs to the user-interface field and will be
discussed in a forthcoming paper.

For efficiency reasons, the criterion implemented in Matita is Criterion 2, that
is a restriction of Criterion 1. There are cases of undetected spurious errors in
Matita that would have been caught by the more general criterion. Consider for
instance the right hand side of the formula given in Example 1. According to
Criterion 1 the only two genuine errors are:

– "in ?1 + z: z is a vector, but is used as a scalar"
– "in ?1+?2

−→+z: ?1+?2 is a scalar, but is used as a vector"

however, according to Criterion 2, we also get the errors:

– "in α · f(x)−→+?1
−→+z: α · f(x) is a scalar, but is used as a vector"

– "in α−→· f(x)−→+?1
−→+z: f(x) is a scalar, but is used as a vector"

Moreover Criterion 1 is debatable itself: are both the above “genuine” errors
really genuine? Would mathematicians agree that the second error is spurious
since the number of scalars is greater than the number of vectors in the sum?
What if there were two scalars and two vectors in the same sum? Or does the
order matter? Does the first addend determines the signature of the sum?

Unable to convince ourselves that a general answer to the above questions
exists, we claim that Criterion 1 is widely acceptable and never gives false posi-
tives. Whether the gap between the two criteria can be reduced without loosing
efficiency is an open research direction.
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Abstract. To be effective and useful, math search systems must not
only maximize precision and recall, but also present the query hits in a
form that makes it easy for the user to identify quickly the truly relevant
hits. To meet that requirement, the search system must sort the hits ac-
cording to domain-appropriate relevance criteria, and provide with each
hit a query-relevant summary of the hit target.

The standard relevance measures in text search, which rely mostly on
keyword frequencies and document sizes, turned out to be inadequate in
math search. Therefore, alternative relevance measures must be defined,
which give more weight to certain types of information than to others
and take into account cross-reference statistics. In this paper, new, multi-
dimensional relevance metrics are defined for math search, methods for
computing and implementing them are discussed, and comparative per-
formance evaluation results are presented.

Query-relevant hit-summary generation is another factor that enables
users to quickly determine the relevance of the presented hits. Although
the hit title accompanied by a few leading sentences from the target
document is simple to produce, this often fails to convey to the user the
document’s relevant excerpts. This shifts the burden onto the user to
pursue many of the hits, and read significant portions of their target doc-
uments, to finally locate the wanted documents. Clearly, this task is too
time-consuming and should be largely automated. This paper presents
query-relevant hit-summary generation methods, outlines implementa-
tion strategies, and presents performance evaluation results.

1 Introduction

Digital math libraries consist mostly of equations, graphs, tables, numerous em-
bedded mathematical expressions, and text. Clearly, users will need specialized
search systems to find and locate quickly the math information that is most
relevant to their needs. A number of search systems have been built and are un-
dergoing further enhancements, such as the NIST DLMF search system [13,17,18]
and the Design Science’s Mathdex [10].
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For enhanced utility and user-satisfaction, math search systems must not only
maximize precision and recall, but also present the query hits in a form that
makes it easy for the user to identify quickly the truly relevant hits. To meet
that requirement, the search system must sort the hits according to domain-
appropriate relevance criteria, and provide with each hit a query-relevant sum-
mary of the hit target.

The standard relevance measures in text search, which rely mostly on key-
word frequencies and document sizes, turned out to be inadequate in math
search. Therefore, alternative relevance measures must be defined, which give
more weight to certain types of information than to others, such as definitions,
theorems,“standard” functions and operators, and frequently referenced items.
In this paper, new, multi-dimensional relevance metrics are defined for math
search, methods for computing and implementing them are discussed, and com-
parative performance evaluation results are presented.

Query-relevant hit-summary generation, or simply hit packaging, is another
factor that enables users to quickly determine the relevance of the presented
hits, and thus determine the most relevant hits. Although the hit title, possibly
accompanied by a few leading sentences from the target document, forms a fast
and simple way for hit packaging, it often fails to convey to the user the docu-
ment’s relevant excerpts. This shifts the burden onto the user to pursue many of
the hits, and read significant portions of their target documents, to finally locate
the wanted documents. Clearly, this task is too time-consuming, and should be
done by the software on behalf of the user. This paper presents query-relevant
hit-summary generation methods, outlines implementation strategies, and shows
substantiating illustrations.

2 Background and Related Work

Three types of math search systems have received attention and/or have been
built. The first is field-based search systems, which are now widely deployed in
several mathematics databases and by many mathematical content providers,
such as Zentralblatt’s ZMATH and MathDi [19,9], the Jahrbuch Database [6],
AMS’s MathSCiNet [1], and various professional mathematical socities. Such
systems are intended for conventional library search, and are outside the scope
of this paper. The second is formal-math search, such as the search systems
developed and researched by Guidi et al [4,5], MoWGLI of the Helm project
[14], and MIZAR [2]. Formal-math search systems are highly specialized and
usually intended for advanced mathematicians, and are thus outside the scope
of the paper.

The third type of math-search is math-aware fine-grain search such as the
DLMF search system [13,17,18], the Design Science’s Mathdex Web search sys-
tem [10,11], and Mathematica search system [12]. This type of math search is
indended for general use by students, educators, researchers, and professionals,
in mathematics, physical sciences, and engineering. It is this kind of search that
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requires further investigation for relevance ranking and hit packaging, which are
the focus of this paper.

Relevance scoring has received much research attention in text search for over
three decades [16,15]. Although several relevance metrics have been developed
and studied, most are elaborations and variations of one central metric, often
referred to as the tf-idf metric (term frequency inverse document frequency).
Essentially, this metric is predicated on the assumptions that (1) the higher the
relative frequency of a query keyword in a hit document is, the more relevant the
document is, and (2) the more frequent a term is in the whole database, the less
important its occurrences are. One implication is that if two documents have the
same number of occurrences of the keywords but one is a smaller document than
the other, the smaller document ranks higher because its relative term-frequency
(i.e., number of keyword occurrences divided by the document size) is larger.

Such traditional considerations are highly inadequate in math search. For
example, if the hit targets are equations, a smaller-size equation is not necessarily
more relevant or more important to the user. Also, in math, the frequency of
occurrence of a term is much less important than the mathematical significance
of that term. Finally, the importance of a term is context-dependent, especially
in math, as for example in what part of a math structure the term lies, and what
other terms the term co-occurs with.

The shortcomings of traditional relevance scores were recognized in Web
search, especially by Google. It was realized that the importance, and thus
relevance, of a document/page depends more on who publishes it, how many
links point to it, how many times it is visited, and such, than the “uninformed”
statistics of term frequencies and document sizes.

These same considerations can be utilized in math search, but after signifi-
cant adaptations and specialization to math contents. For example, the number
of times a particular math entity (e.g., equation) is referenced in a document/site
can be a very telling indication of the relative importance of that entity. In ad-
dition to cross-reference statistics, domain-specific term weighting can be taken
into account in relevance scoring, with great expected benefits. For example, if
a query includes among its keywords the term ”BesselI” and the variable name
“x”, then intuitively the first term is much weightier than the second term.

The relevance metrics used in the current generation of mostly experimental
math search systems are primarily identical to the ones used in conventional text
search, that is, the tf-idf metric. In this paper, alternative metrics are developed
and shown to yield better results.

The other subject of focus in this paper, which has an equal bearing on helping
users find relevant information fast, is hit-description generation. Hit-description
generation, or hit packaging, has never been viewed as a major issue in text
search, and has thus been done in a rather simple way. Prior to Web search, text
search systems often reported each hit as a document title, sometimes accom-
panied by a few leading sentences in the hit’s document. In Web search, such
as in Google, the hit package consists of the page title of the hit, accompanied
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with 2–4 lines of sentences or sentence fragments that contain the keywords of
the query, usually highlighted.

As math search is still in its early experimental phases, where more pressing
issues have had to be addressed first, the same methods used in text search are
used by necessity, until more specialized alternatives are found. In Mathdex of
Design Science, the Web page title and the first couple of lines of the Web page
contents of the hit are displayed with the hit. As a significant enhancement,
a special button is added next to each hit, which when moused over, shows
one equation or math expression that made the page match the query. In early
experimental versions of DLMF search, two hit-packaging methods were used,
depending on the nature of the hit. If the hit target has a small amount of con-
tents, such as equations or even graphs and small-size tables, the entire target
content is presented in the hit itself, providing immediacy and directness. If, on
the other hand, the hit target is a section of a chapter, the hit description con-
sists of the section title and the chapter title. Mathematica search is somewhat
more advanced in providing hit descriptions. Like Google, Mathematica offers
with each hit about 2 lines of sentence fragments that contain query keywords.
Mathematica’s hit packaging may be adequate for Mathematica contents, which
tend to be short descriptions of functions or portions of code mixed with some
text, but it will not be sufficient for general-purpose math search.

Clearly, much more representative and query-relevant descriptions of hit tar-
gets should be generated per math-hit. The reason is that the user will be able
to judge faster the value and relevance of the hit without having to pursue
many hits and read long passages in them before the valuable and truly rele-
vant information is found. Techniques generating such descriptions/summaries
are presnted in this paper.

3 Relevance Ranking in Math Search

Before the new relevance metrics are introduced and related considerations dis-
cussed, it is instructive to look at the standard tf-idf metric. For a query q and
a hit-target document d in some presumed database DB, the tf-idf relevance
metric value is:

Relevanceq(d) =
∑

query terms t

tf(t, d)× idf(t)

where

tf(t, d) =

√
frequency(t)

|d|

and

idf(t) = log
|DB|

number of documents containing t
.

(|d| is the number of terms in document d, and |DB| is the number of documents
in the database.)
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Note that the first factor, tf(t, d), represents the frequency of a term in the
document, normalized by the document size, and that the second factor, idf(t),
represents the inverse of the number of documents containing the term relative
to the total number of documents in the database. The square root and the log
are meant to attenuate the contributions of those factors to various degrees.

A deeper look into the formula reveals that the first factor attempts to capture
the importance (or weight) of the term t with respect to the document d (and
thus the relevance of the document relative to the term t), while the second
factor attempts to capture the weight of the term t with respect to the database
as a whole.

The paper will preserve this paradigm of expressing the relevance of a doc-
ument to a term in terms of of the weight of the term vis-a-vis the document
and the weight of the term vis-a-vis the database. What will change is the way
of measuring each of those factors; tf(t, d) will be replaced by a general term-
document weight function Weight(t, d), and idf(t) will be replaced by a term
weight function Weight(t), and a math object weight function Weight(mo) will
be introduced (where a math object can be a full document or some small items
such as an equation or even a sentence); all such weight functions will be elabo-
rated later. Furthermore, since various aspects will influence those factors, and
some aspects are absolutely more important than others, it will be determined
that a multidimensional relevance metric, which is then a relevance vector, is a
more apt way of measuring relevance and thus of sorting the hits.

As argued earlier, mere frequency and size statistics do not fully capture the
importance and relevance of documents. Rather, several other static (i.e., query-
independent) and dynamic (i.e., query-dependent) aspects have to be taken into
account when computing Weight(t, d), Weight(t) and Weight(d).

Static Weight Information

Many math terms have intrinsic importance due to what they stand for, and
some terms have more intrinsic importance than others. For example, special
function names stand for much more than a moot variable name. Similarly,
certain operators, such as integration (

∫
), exponentiation and division, are more

important than variable names. This type of intrinsic importance of terms in
themselves is called categorical importance. Categorical importance is a primary
determinant of the term-weight function Weight(t).

Accordinly, the term-weight function Weight(t) can be defined as follows:

Weight(t) = Quantify(Type(t)),

where

– Type maps a term to a category based on some typology or taxonomy of
terms from a term-importance perspective. For example, the term categories
can be “operator”, “special-function” and “regular” (for everything else).

– Quantify is a mapping that maps a term-type into a positive real number
associated with that type, where the more important a type is, the larger
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its associated number is. For example, one can have Quantify(regular) = 1,
Quantify(operator) = 2, and Quantify(special function) = 4.

Much like terms, math objects (e.g., equations or full documents) have intrin-
sic importance irrespective of the query. Several aspects feed into that impor-
tance:

1. the type of the math object, such as equation, graph, table, bibliographic
item, notation item, and so on;

2. the categorical importance of the member terms and other constituent (i.e.,
subset) objects;

3. the number and possibly types of cross-references made to the object by other
objects in the database (or even on the Web). The types of cross-references
are taxonomized in two ways. In the first taxonomy, a cross-reference can be
local or global:
– a local cross-reference is one where the referring object and the referred-

to object belong to one and the same division of information, such as
one chapter or one Website;

– a global cross-reference is one where the two objects belong to two dif-
ferent divisions of information.

In the second taxonomy, cross-references can be definitional cross-references
or propositional cross-references:
– A reference from object A to object B is definitional if both of the

following conditions are met:
• Object B defines some mathematical term/concept c
• Object A refers explicitly to object B as the object that defines c.

– A reference from object A to object B is propositional if both of the
following conditions are met:
• Object B states and/or proves some proposition (where the term

“proposition” is used in a broad sense, so it encompasses theorems,
lemmas, corollaries, “inline” substantiated or stipulated claims, etc.)

• Object A refers explicitly to object B as the primary location of
proposition P .

Accordingly, the math-object weight function Weight(mo) can be defined as
follows:

Weight(mo) = Combine(Quantify(Type(mo)),TW (mo),CR(mo)),

where

– Type and Quantify are like those for terms except here the categories are
those of math objects;

– TW (mo) captures the weight of the terms that make up the math object
mo;

– CR(mo) captures and quantifies the statistics of cross-reference pointers
pointing to mo;
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– Combine combines the various aspects (i.e, object type, wieght of the con-
stituent terms of the object, and cross-reference information) into either a
scalar or a vector value, as explained next.

Combining several factors of various degrees of importance into a single
ranking-metric can be done in two ways. The first way is to map the vector
V = (x1, x2, . . . , xn) of factors into a scalar value S, such as by adding or
multiplying the components, where every component xi is magnified by some
weight wi to reflect its relative importance. That is, the scalar value formula
can be S =

∏n
i=1 xwi

i or S =
∑n

i=1 wixi, among many possibilities of combining
weighted factors. With scalar metrics, the ranking is done by straightforward
sorting of objects according to their scalar ranking metric.

The other way of combining factors is to map the vector of factors V =
(x1, x2, . . . , xn) into another, carefully ordered vector of factors V ′ = (y1, y2,
. . . , ym), resulting in a vector ranking metric of the same as or smaller dimen-
sionality than that of the original vector V . The first component y1 corresponds
to the factor of highest weight, y2 corresponds to the factor of the second highest
weight, and so on. The ranking of objects is then done by lexigraphic sorting of
the vector metric values of the objects.

Vector ranking metrics have several advantages. First, there is no need to con-
cern oneself about how the weights of the various factors should be quantified
and factored into metric formula. Second, and more importantly, vector metrics
and lexicographic sorting stricly enforce the policy that a most important fac-
tor should not be overwhelmed by a comination of less important factors. For
example, if an object A has the highest y1 value among a set of objects, it will
rank ahead of all the other object regardless of the values of the other yis. In
particular, if definitional types of objects are desired to rank at the tops of hits,
the system can have the first component of V ′ correspond to object type, and
give the largest value to definition types (compared to other object types such
as propositions, graphs, etc.).

In this paper, the vector ranking metric approach is adopted. To be precise,
the combine function used employs a hybrid of scalarization and vectorization
as seen next.

The TW (mo) function can have scalar or vector values. Specifically, assume
that the types of terms are {T1, T2, . . . , Tk}, as for example {regular, operator,
special-function}. Then,

TW(mo) =
k∑

i=1

Quantify(Ti)×Ni(mo)

or
TW(mo) = (N1(mo), N2(mo), . . . , Nk(mo))

where
Ni(mo)=number of terms of type Ti in the object mo.



400 A.S. Youssef

The CR(mo) function maps the cross-reference information into a vector that
reflect the number of cross-references of the four possible types identified earlier:

CR(mo) = (GD(mo), GP (mo), LD(mo), LP (mo))

where
– GD(mo) = number of global, definitional cross-references to object mo
– GP (mo) = number of global, propositional cross-references to object mo
– LD(mo) = number of local, definitional cross-references to object mo
– LP (mo) = number of local, propositional cross-references to object mo.

Dynamic Weight Information

Dynamic weight information relates to the weight of math object mo relative
to the terms t of a query q. That information is incorporated into the function
Weight(t, mo) or generally Weight(q, mo).

One possible definition of Weight(q, mo) is the same as TW (mo) except that
the terms will be limited to those that are in the intersection of the object and
the query. An elaboration on this definition would be to factor in the number
ND(q, mo) of the query keywords that are defined in the object mo. Therefore,
assuming that the types of terms are {T1, T2, . . . , Tk},

Weight(q, mo) = (ND(q, mo), N1(q, mo), N2(q, mo), . . . , Nk(q, mo))

where
Ni(q, mo) = |{t | Type(t) = Ti and t ∈ mo and t is a keyword of the query q}|.

Overall Relevance Vector Metric

Based on the preceding analysis and discussions, the overall relevance met-
ric is a vector made up of the components of Weight(q, mo) vector and the
Weight(mo) vector, ordered according to what the system designer’s assigned
relative importance of each component.

It is the author’s judgement, and for the sake of performance evaluation pre-
sented later, that a good relevance metric be a vector where the relevance com-
ponents, ordered from the highest importance to the lowest importance, are:

– ND(q, mo), which is the number of query keywords defined in the object
mo,

– Ni(q, mo) for the top one or two most important term types, where Ni(q, mo)
is the number of terms of type Ti that occur in both the query and the object,

– CR(mo) = (GD(mo), GP (mo), LD(mo), LP (mo)). It captures the global
and local definitional/propositional cross-reference statistics,

– the remaining Ni(q, mo)s
– TW(mo), which is the term-weight of the object mo, expressed either as a

vector or a weighted sum,
– (optional) Quantify(Type(mo)), reflecting preferences for certain docu-

ment/object types over others,
– tf-idf(q, mo), as a final tie-breaker.
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3.1 Speed Performance Evaluation of Hit Ranking

The relevance ranking scheme discussed in this paper has been implemented
and tested on the DLMF testbed. Several queries with a range of numbers of
hits were tested to measure the overhead of relevance ranking. A sample of the
results is presented in Table 1. The table shows the queries, the number of hits
per query, the search time for identifying the hits but without ranking, and the
time to perform the relevance computation and relevance ranking of the hits.
As can be seen, the relevance computation and ranking time is usually higher
than the search time, and, naturally, it is higher for larger numbers of hits.
Nevertheless, for a standalone database of the size range of DLMF (i.e., about
1000 pages of contents containing over ten thousands equations), the number
of hits will usually be in the tens, hundreds, or at most in the thousands, the
relevance ranking overhead ranges from a tenth of second to at most a second,
which is quite acceptable.

For Web search relevance ranking, where the number of hits could conceivable
be in the hundreds of thousands or even millions, the relevance ranking time
will be significantly higher. However, the overhead can be managed down to
practical ranges. One possibility is to do a two-stage ranking. In the first stage,
a coarse relevance metric is applied, which takes into account a carefully selected
small subset of the relevance criteria when computing relevance, and instead of
sorting all the hits, find the top 100 (or so) hits. In the second stage, a full-
fledged relevance evaluation and sorting of those 100 hits is done and the hits
are presented to the user in hit-pages, about 10 hits per page. Since the truly
relevant hits are very likely to be in the top 100, and most users rarely search
down beyond that level, this approach will often be sufficient. In the rare cases
where a user wishes to see the hits below rank 100, the 2nd stage is repeated on
the next 100 hits, and so on.

It is left to future work to address the important question of determining
which subset of relevance criteria makes a good coarse-grained relevance metric
to be used in the first stage of the 2-stage Web search relevance ranking process.

Table 1. Speed Performance of Search and Hit Ranking (All time measurements are
in milliseconds)

Query Number of Hits Search Time Hit-ranking Time

Ai2 7 16 15∫
sin 19 15 16

eulerBeta 28 15 32
sin2 80 15 78
jacobiSN OR Si 94 31 63
eulerGamma 653 31 344
cos 666 16 297
sin 707 15 329
z 2499 16 828
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3.2 Outcome Performance Evaluation of Hit Ranking

Outcome performance evaluation of relevance ranking is extremely subjective. A
thorough evaluation of this sort will be left to future work, where a statistically
significant number of users and a benchmark of queries are identified and used,
and a metric of user satisfaction is decided upon and utlized in the collection of
user assessments of the search system, including the relevance ranking and the
hit-description generation which is discussed in the next section.

For now, suffice it to say that based on the expectations that definitions
will be sought after more often and by more users, and based on the valuation
scheme where the definitions/equations/plots that are cross-referenced more of-
ten are of more weight, the outcome is far superior to the default tf-idf relevance
ranking approach. Hundreds of queries were tested. In each and every case, def-
initions and notations of the query keywords ranked on top, and items of higher
cross-reference values ranked higher. Under the tf-idf relevance model, such hits
were“buried” in the second, third, or fourth page of hits.

We predict that future evaluation of user satisfaction will confirm the hy-
pothesis that the new relevance metrics are far superior to the tf-idf metric. Of
course, further refinements will be suggested by the future subjective evaluation.

4 Hit-Description Generation in Math Search

As mentioned earlier, the rather simple way of putting together the hit-title
and a few leading sentences of the hit-target fails to convey to the user why a
doument matched and whether the matching parts are indeed relevant. It will
be much better to the user if those parts are extracted and provided with the
hit so the user can quickly dtetermine whether or not a hit is worth pursuing.
Furthermore, of those parts are determined carefully, they may often be all
that the user needs from a document, thus saving him/her from extra efforts.
This section will provide new methods for determining query-relevant excerpts
from math documents. Before starting, it must be noted that if the hit targets
are small math objects (e.g., equations or graphs), then such objects should be
displayed directly with the hits as they make the best representation of hits.
Therefore, for the rest of this section, it will be assumed that the hit targets are
relatively sizable objects that cannot be conveniently displayed along with hits,
such as sections, chapters, articles, and so on.

The approach to hit-description generation consists of several tasks. Some
tasks must be carried out at indexing time, while other tasks must be at search
time. One major goal is to minimize the computations that must be done at
search time so that query turn-around time is short enough for users.

Index-Time Tasks for Hit Generation

1. Fragment each document in the database into very small units of informa-
tion, where a unit can be (1) an equation, (2) a sentence, which may contain
inline math expressions, (3) a graph, (4) a fragment of a table (in the case
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where tables are large), (5) a title of a chapter/section/subsection, (6) a
notational item, and so on. This fragmentation will take place when the
documents are indexed.

2. Each fragment is then turned into a mini-document with its own ID. The
mini-document contains, besides its contents, several fields of information
that will facilitate and speed up the hit-description generation at search
time. One field is the ID of the document of which the mini-document is a
fragment. Other fields contain static information that will be used to measure
the relevance vector of the mini-document at search time.

3. Index the fragments (i.e., mini-documents) of all the documents, and store
the index information in a separate index structure, termed the fragment
index. That index is different from the index for the documents. Note that
fragment contents and the fields in the fragment are stored verbatim in the
fragment index. The reason for this will be explained below.

Search-Time Tasks for Hit Generation

At search time, when the IDs of the hits that match a query have been deter-
mined, the hits are presented one page at a time (typically 10 hits per page).
For each page of hits, the descriptions of those hits are generated. The following
outlines the tasks to be performed:

1. For each hit in a hit-page, identify the ID of the target document, and
formulate a derivative query made up of the conjunction of the original query
and the ID of the target document.

2. Submit the query for search against the fragment index. This results in sev-
eral “sub-hits”, each of which is a fragment of the hit target document.

3. If no sub-hits are returned, relax the derivative query so that the keywords in
the original query are combined into a disjunctive query (i.e., an OR-query
of the keywords), and repeat step 2, resulting this time with one or more
sub-hits.

4. The sub-hits are then relevance-ranked using the relevance vectors described
in the previous section. Note that the relevance vector values of the fragments
can be computed fast because much of the weight information (i.e., the static
weight information) is stored in the fragment index, and thus need not be
computed from scratch.

5. A few top-scoring sub-hits (i.e., fragments) are selected, retrieved from the
fragment index, and combined (in document-order) into a descriptive sum-
mary that is presented along with the hit title in the hits page.

Several remarks are in order. First, this hit-description method requires no
file IO since all the fragment contents are stored in the fragment index, which
is a file that remains open as long as the search system is running. This greatly
speeds up the hit-description generation process. Second, the identification of the
relevant excerpts (i.e, fragments) is rather fast and straightforward: it is a search-
within-search process. Third, the relevance ranking of the matching fragments is
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also fast since the static weight statistics are computed and stored at indexing
time, thus reducing the conputation time for obtaining the relevance vectors of
the fragments. Last, hit-description generation requires considerably more disk
space to store the fragment index, which is much larger that the document index
because the actual fragments are stored in the fragment index. However, since
disk space is very inexpensive, the cost overhead is not a serious disvantage.

4.1 Speed Performance Evaluation of Hit-Description Generation

The same performance evaluation was done for hit-description generation as for
relevance ranking. A sample of the results is shown in Table 2. The table shows
the queries, the time it takes to derive the description of a single hit, and the
time to derive the descriptions of 10 hits that make up a hit-page. As can be
seen, the time for generating the descriptions for the hits in one page ranges
from a few to less than 300 milliseconds.

It is important to note that based on the two Tables 1 and 2, the total wait
time for a query to be processed and searched, plus the time to relevance-rank all
the hits, plus the time to generate the hit-descriptions per 10-hit page, is about
one second or less, making quite feasible the whole approach of math searching,
relevance ranking, and hit packaging.

Table 2. Speed Performance of Hit-Description Generation (All time measurements
are in milliseconds, and a page has 10 hits)

Query Hit-packaging Hit-packaging
Time per Hit Time per Page

Ai2 26 260∫
sin 10.11 101.1

eulerBeta 7 70
sin2 19.42 194.2
jacobiSN OR Si 4.97 49.7
eulerGamma 6.33 63.3
cos 4.28 42.8
sin 4.16 41.6
z 5.32 53.2

4.2 Outcome Performance Evaluation of Hit-Description
Generation

The outcome performance is subjective to some extent. Nevertheless, exten-
sive testing was done on the DLMF testbed on over 100 queries, and the hit-
descriptions were examined closely. For each hit, the 5 top-ranking fragments
that were identified and presented as the description were found to be truly the
most query-relevant and representative of the hit-document. For example, for
the query ”sin”, the top-ranking hit was the one where sin z is defined, and the
description of that hit is:
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1. Definitions and Periodicity (in Elementary Functions Chapter)
sin z = eiz−e−iz

2i , ... e±iz = cos z ± i sin z, ... tan z = sin z
cos z , ...

csc z = 1
sin z , ... cot z = cos z

sin z = 1
tan z

The hit-document contains other contents involving sin, such as sin(z + 2kπ) =
sin z, but because the number of fragments per hit-description was limited to 5,
some fragments had to be left out. If the description size is set to larger numbers
of fragments, more will be included per description. The ideal hit-description
size in math search is an aspect that requires further research.

Of course, a thorough subjective evaluation involving a large number of users
and a carefully selected benchmarks of queries will have to be conducted in the
future.

5 Conclusions

In this paper, new relevance ranking metrics and hit-description generation tech-
niques were presented and analyzed, and their performance was evaluated. It was
found that the new relevance metrics are far superior to the conventional tf-idf
metric, and the new hit-descriptions are more query-relevant and representative
of the hit targets than convential methods of providing the title and some leading
sentences of the target document. Furthermore, it was determined that the sys-
tem response time was about one second or less, which attests to the feasibility
of the new approaches working collectively as a system.

Future research will focus on subjective evaluation of the new techniques, with
a cross-section of users, using standard testbeds and query benchmarks that the
research community will hopefully generate and agree upon. Refinements and
extensions of the techniques will undoubtedly have to be carried out as a result
of the subjective evaluation and the users’ feedback. Also, incorporating high-
lighting into the hit-descriptions, and turning each fragment in a hit-description
into a hot link that would lead the user to the right location in the hit target,
are subjects for further research and implementation.
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Farmer, William M. 13, 66
Fiedler, Armin 176

Grabowski, Adam 235
Grue, Klaus 250

Horozal, Feryal Fulya 265
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